Solomon White , Encarni Medina Lopez , Tiago Silva , Evangelos Spyrakos , Adrien Martin , Laurent Amoudry
{"title":"Exploring the link between spectra, inherent optical properties in the water column, and sea surface temperature and salinity","authors":"Solomon White , Encarni Medina Lopez , Tiago Silva , Evangelos Spyrakos , Adrien Martin , Laurent Amoudry","doi":"10.1016/j.rsase.2025.101454","DOIUrl":null,"url":null,"abstract":"<div><div>Sea surface salinity and temperature are important measures of ocean health. They provide information about ocean warming, atmospheric interactions, and acidification, with further effects on the global thermohaline circulation and as a consequence the global water cycle. In coastal waters they provide information about sub mesoscale circulations and tidal currents, riverine discharge and upwelling effects. This paper explores the methodology to extract sea surface salinity (SSS) and temperature (SST) from ground based hyperspectral ocean radiance. Water leaving radiance is linked to the inherent optical properties of the water column, effected by the constituent parts. Hyperspectral data at ground level is then used as input to train a linear regression model against temporally and spatially matched water data of SSS and SST. Furthermore, a neural network model to be able to estimate the SST and SSS with the hyperspectral data averaged to multispectral bands to emulate the satellite use case. The neural network model is able to learn the relationship between the multispectral radiance to both SSS and SST values, and can predict these with a root mean square error (RMSE) of 0.2PSU and 0.1 degree respectively. This demonstrates the feasibility of similar algorithms applied to multispectral ocean colour satellites with enhanced coverage and spatial resolution.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101454"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sea surface salinity and temperature are important measures of ocean health. They provide information about ocean warming, atmospheric interactions, and acidification, with further effects on the global thermohaline circulation and as a consequence the global water cycle. In coastal waters they provide information about sub mesoscale circulations and tidal currents, riverine discharge and upwelling effects. This paper explores the methodology to extract sea surface salinity (SSS) and temperature (SST) from ground based hyperspectral ocean radiance. Water leaving radiance is linked to the inherent optical properties of the water column, effected by the constituent parts. Hyperspectral data at ground level is then used as input to train a linear regression model against temporally and spatially matched water data of SSS and SST. Furthermore, a neural network model to be able to estimate the SST and SSS with the hyperspectral data averaged to multispectral bands to emulate the satellite use case. The neural network model is able to learn the relationship between the multispectral radiance to both SSS and SST values, and can predict these with a root mean square error (RMSE) of 0.2PSU and 0.1 degree respectively. This demonstrates the feasibility of similar algorithms applied to multispectral ocean colour satellites with enhanced coverage and spatial resolution.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems