Sessile ⟨100⟩ self-interstitial clusters with non-parallel edge dumbbells in irradiated bcc Fe and other metals

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-09-07 DOI:10.1016/j.scriptamat.2024.116353
{"title":"Sessile ⟨100⟩ self-interstitial clusters with non-parallel edge dumbbells in irradiated bcc Fe and other metals","authors":"","doi":"10.1016/j.scriptamat.2024.116353","DOIUrl":null,"url":null,"abstract":"<div><p>Density Functional Theory calculations of self-interstitial atom clusters in bcc Fe unexpectedly show that from ∼9–14 self-interstitial atoms, an intriguing new family of sessile ⟨100⟩ clusters, surrounded by ⟨110⟩ dumbbells, are more stable than highly mobile clusters of parallel ⟨111⟩ dumbbells. The ⟨110⟩ edge dumbbells find a favorable location in terms of strain energy on the tensile side around the edges of the ⟨100⟩ center, thus stabilizing the clusters. These sessile clusters might explain resistivity recovery results that suggested an absence of glissile self-interstitial clusters up to large cluster sizes in irradiated Fe, while smaller self-interstitial atom clusters likely would have been present. The mechanism of non-parallel edge interstitials stabilizing an otherwise higher energy interstitial loop is also found in some fcc metals.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003889","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Density Functional Theory calculations of self-interstitial atom clusters in bcc Fe unexpectedly show that from ∼9–14 self-interstitial atoms, an intriguing new family of sessile ⟨100⟩ clusters, surrounded by ⟨110⟩ dumbbells, are more stable than highly mobile clusters of parallel ⟨111⟩ dumbbells. The ⟨110⟩ edge dumbbells find a favorable location in terms of strain energy on the tensile side around the edges of the ⟨100⟩ center, thus stabilizing the clusters. These sessile clusters might explain resistivity recovery results that suggested an absence of glissile self-interstitial clusters up to large cluster sizes in irradiated Fe, while smaller self-interstitial atom clusters likely would have been present. The mechanism of non-parallel edge interstitials stabilizing an otherwise higher energy interstitial loop is also found in some fcc metals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐照 bcc 铁和其他金属中具有非平行哑铃边的⟨100⟩状自间隙团簇
bcc Fe 中自间隙原子团簇的密度泛函理论计算出乎意料地表明,从 ∼9-14 个自间隙原子中,一个有趣的新家族--被⟨110⟩哑铃包围的无梗⟨100⟩团簇,比平行⟨111⟩哑铃的高流动性团簇更稳定。⟨110⟩边缘哑铃在⟨100⟩中心边缘的拉伸侧找到了应变能的有利位置,从而稳定了团簇。电阻率恢复结果表明,辐照铁中不存在大簇尺寸的闪烁自间隙簇,而较小的自间隙原子簇可能会存在。在一些 fcc 金属中也发现了非平行边间隙稳定高能量间隙环的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Correlations between local chemical fluctuations and grain boundary strength in Ti-Zr-Nb-Ta-Mo refractory multi-principal element alloys Formation of single-phased B2 multi-principal element intermetallics: From experiments to modeling In-situ TEM investigation of the effect of nano twins on the evolution of He bubbles under thermo-mechanical coupling conditions Superhigh strength and ductile press-hardening steel produced by shortened austenitization of microstructure containing Mn/Cr-rich cementite particles Comparing molecular dynamics simulations of grain growth with experimental data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1