Yanfeng Zhang , Han Zhang , Xiaodong Tang , Shaoqiong Yang , Yanhui Wang , Xiayan Lin , Di Tian , Dake Chen
{"title":"Oceanic response to tropical cyclone in the northern South China Sea observed by underwater gliders during 2018 and 2020","authors":"Yanfeng Zhang , Han Zhang , Xiaodong Tang , Shaoqiong Yang , Yanhui Wang , Xiayan Lin , Di Tian , Dake Chen","doi":"10.1016/j.dsr.2024.104387","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we mainly used in-situ observations from underwater gliders to analyze the ocean response in the northern South China Sea affected by Son-tinh (2018), Mandal et al. (2018) Mangkhut (2018)and Noul (2020). The results showed that these TCs caused 0.6 °C, 1.1 °C and 1.7 °C maximum sea surface temperature cooling respectively, which were weaker than general conditions because of long distance, weak intensity and fast movement speed. Net solar radiation, precipitation, 10-m wind and sea surface heat flux also made contribution in changes of SST. The mixed layer depth (MLD) became shallower after Son-Tinh and Noul passed through, while during Mangkhut it did not change significantly. After TCs passed through, the stratification around MLD became more obvious, with a banded distribution and stronger high-value areas of buoyancy frequency. Within 1 week after the shortest distance, the temperature and salinity responses in the upper ocean were stronger than those at the sea surface, and the gradients of temperature and salinity and their anomalies were more evident in the subsurface layer. The results of this study show that underwater glider observations are important for understanding oceanic responses to tropical cyclones and are useful for studying tropical cyclone activities.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104387"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001572","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we mainly used in-situ observations from underwater gliders to analyze the ocean response in the northern South China Sea affected by Son-tinh (2018), Mandal et al. (2018) Mangkhut (2018)and Noul (2020). The results showed that these TCs caused 0.6 °C, 1.1 °C and 1.7 °C maximum sea surface temperature cooling respectively, which were weaker than general conditions because of long distance, weak intensity and fast movement speed. Net solar radiation, precipitation, 10-m wind and sea surface heat flux also made contribution in changes of SST. The mixed layer depth (MLD) became shallower after Son-Tinh and Noul passed through, while during Mangkhut it did not change significantly. After TCs passed through, the stratification around MLD became more obvious, with a banded distribution and stronger high-value areas of buoyancy frequency. Within 1 week after the shortest distance, the temperature and salinity responses in the upper ocean were stronger than those at the sea surface, and the gradients of temperature and salinity and their anomalies were more evident in the subsurface layer. The results of this study show that underwater glider observations are important for understanding oceanic responses to tropical cyclones and are useful for studying tropical cyclone activities.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.