首页 > 最新文献

Deep-Sea Research Part I-Oceanographic Research Papers最新文献

英文 中文
Nutrient fluxes, oxygen consumption and fatty acid composition from deep-water demo- and hexactinellid sponges from New Zealand 新西兰深水底栖类和六棘类海绵的营养通量、耗氧量和脂肪酸组成
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-11-10 DOI: 10.1016/j.dsr.2024.104416
Tanja Stratmann , Kathrin Busch , Anna de Kluijver , Michelle Kelly , Sadie Mills , Sven Rossel , Peter J. Schupp
<div><div>Sponges are an important component of deep-water ecosystems enhancing eukaryotic biodiversity by hosting diverse endo- and epibiota and providing three dimensional habitats for benthic invertebrates and fishes. As holobionts they are important hosts of microorganisms which are involved in carbon and nitrogen cycling. While increasing exploration of deep-water habitats results in new sponge species being discovered, little is known about their physiology and role in nutrient fluxes. Around New Zealand (Southwest Pacific), the sponge biodiversity is particularly high, and we selected six deep-sea sponge genera (<em>Saccocalyx</em>, <em>Suberites</em>, <em>Tedania</em>, <em>Halichondria</em>/<em>Dendoricella</em>, <em>Lissodendoryx</em>) and a member of the Sceptrulophora order for <em>in-situ</em> and <em>ex-situ</em> experiments.</div><div>We investigated the biochemical composition of the sponges, measured oxygen consumption and inorganic nutrient fluxes, as well as bacterial and phospholipid-derived fatty acid (PLFA) compositions. Our aim was to assess differences in fluxes and fatty acid composition among sponges and linking their bacterial communities to nitrogen cycling processes.</div><div>All sponges excreted nitrite and ammonia. Nitrate and phosphate excretion were independent of phylum affiliation (Demospongiae, Hexactinellida). Nitrate was excreted by <em>Halichondria</em>/<em>Dendoricella</em> and <em>Lissodendoryx</em>, whereas <em>Suberites</em>, <em>Tedania</em>, and Sceptrulophora consumed it. Phosphate was excreted by Sceptrulophora and <em>Halichondria</em>/<em>Dendoricella</em> and consumed by all other sponges. Oxygen consumption rates ranged from 0.17 to 3.56 ± 0.60 mmol O<sub>2</sub> g C<sup>-1</sup> d<sup>−1</sup>.</div><div>The PLFA composition was very sponge-genera dependent and consisted mostly of long-chain fatty acids. Most PLFAs were sponge-specific, followed by bacteria-specific PLFAs, and others.</div><div>All sponges, except for <em>Suberites</em>, were low-microbial abundance (LMA) sponges whose bacterial community composition was dominated by Proteobacteria, Bacteroidota, Planctomycetota, and Nitrospinota. <em>Suberites</em> consisted of high-microbial abundance (HMA) sponges with Proteobacteria, Chloroflexota, Acidobacteriota, and Actinobacteriota as dominant bacteria.</div><div>Based on the inorganic nitrogen flux measurements, we identified three types of nitrogen cycling in the sponges: In type 1, sponges (<em>Dendoricella</em> spp. indet., <em>Lissodendoryx</em>) respired aerobically and ammonificated organic matter (OM) to ammonium, fixed N<sub>2</sub> to ammonium, and nitrified aerobically heterotrophically produced ammonium to nitrate and nitrite. In type 2, sponges (<em>Halichondria</em> sp., Sceptrulophora, <em>Suberites</em>, <em>Tedania</em>) respired OM aerobically and ammonificated it to ammonium. They also reduced nitrate anaerobically to ammonium via dissimilatory nitrate reduction to amm
海绵是深水生态系统的重要组成部分,通过寄生多种内生和外生生物群以及为底栖无脊椎动物和鱼类提供三维栖息地,提高了真核生物的生物多样性。作为全生物,它们是参与碳和氮循环的微生物的重要宿主。虽然对深水栖息地的探索不断增加,导致新的海绵物种不断被发现,但人们对它们的生理机能和在营养通量中的作用却知之甚少。我们选择了六个深海海绵属(Saccocalyx、Suberites、Tedania、Halichondria/Dendoricella、Lissodendoryx)和一个 Sceptrulophora 目成员进行原位和异位实验。我们研究了海绵的生化组成,测量了耗氧量和无机营养通量,以及细菌和磷脂衍生脂肪酸(PLFA)组成。我们的目的是评估海绵之间通量和脂肪酸组成的差异,并将其细菌群落与氮循环过程联系起来。所有海绵都排泄亚硝酸盐和氨。硝酸盐和磷酸盐的排泄与所属的门类无关(半知菌门、六知菌门)。硝酸盐由 Halichondria/Dendoricella 和 Lissodendoryx 排泄,而 Suberites、Tedania 和 Sceptrulophora 则消耗硝酸盐。磷酸盐被 Sceptrulophora 和 Halichondria/Dendoricella 排出,而被所有其他海绵消耗。PLFA的组成与海绵属的关系非常密切,主要由长链脂肪酸组成。大多数 PLFAs 是海绵特异性的,其次是细菌特异性 PLFAs 和其他。除了琥珀属(Suberites)以外,所有海绵都是低微生物丰度(LMA)海绵,其细菌群落组成主要是变形菌类、类杆菌属、扁孢菌属和硝化细菌属。根据无机氮通量测量结果,我们确定了海绵中氮循环的三种类型:在类型 1 中,海绵(Dendoricella spp. indet.在第 2 类中,海绵(Halichondria sp.、Sceptrulophora、Suberites、Tedania)对有机物进行有氧呼吸并氨化成铵。它们还通过将硝酸盐还原成铵的异纤毛硝酸盐厌氧还原法将硝酸盐还原成铵。在类型 3 中,铵被微生物硝化为亚硝酸盐,然后再被铵氧化细菌和/或古细菌硝化为硝酸盐。
{"title":"Nutrient fluxes, oxygen consumption and fatty acid composition from deep-water demo- and hexactinellid sponges from New Zealand","authors":"Tanja Stratmann ,&nbsp;Kathrin Busch ,&nbsp;Anna de Kluijver ,&nbsp;Michelle Kelly ,&nbsp;Sadie Mills ,&nbsp;Sven Rossel ,&nbsp;Peter J. Schupp","doi":"10.1016/j.dsr.2024.104416","DOIUrl":"10.1016/j.dsr.2024.104416","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Sponges are an important component of deep-water ecosystems enhancing eukaryotic biodiversity by hosting diverse endo- and epibiota and providing three dimensional habitats for benthic invertebrates and fishes. As holobionts they are important hosts of microorganisms which are involved in carbon and nitrogen cycling. While increasing exploration of deep-water habitats results in new sponge species being discovered, little is known about their physiology and role in nutrient fluxes. Around New Zealand (Southwest Pacific), the sponge biodiversity is particularly high, and we selected six deep-sea sponge genera (&lt;em&gt;Saccocalyx&lt;/em&gt;, &lt;em&gt;Suberites&lt;/em&gt;, &lt;em&gt;Tedania&lt;/em&gt;, &lt;em&gt;Halichondria&lt;/em&gt;/&lt;em&gt;Dendoricella&lt;/em&gt;, &lt;em&gt;Lissodendoryx&lt;/em&gt;) and a member of the Sceptrulophora order for &lt;em&gt;in-situ&lt;/em&gt; and &lt;em&gt;ex-situ&lt;/em&gt; experiments.&lt;/div&gt;&lt;div&gt;We investigated the biochemical composition of the sponges, measured oxygen consumption and inorganic nutrient fluxes, as well as bacterial and phospholipid-derived fatty acid (PLFA) compositions. Our aim was to assess differences in fluxes and fatty acid composition among sponges and linking their bacterial communities to nitrogen cycling processes.&lt;/div&gt;&lt;div&gt;All sponges excreted nitrite and ammonia. Nitrate and phosphate excretion were independent of phylum affiliation (Demospongiae, Hexactinellida). Nitrate was excreted by &lt;em&gt;Halichondria&lt;/em&gt;/&lt;em&gt;Dendoricella&lt;/em&gt; and &lt;em&gt;Lissodendoryx&lt;/em&gt;, whereas &lt;em&gt;Suberites&lt;/em&gt;, &lt;em&gt;Tedania&lt;/em&gt;, and Sceptrulophora consumed it. Phosphate was excreted by Sceptrulophora and &lt;em&gt;Halichondria&lt;/em&gt;/&lt;em&gt;Dendoricella&lt;/em&gt; and consumed by all other sponges. Oxygen consumption rates ranged from 0.17 to 3.56 ± 0.60 mmol O&lt;sub&gt;2&lt;/sub&gt; g C&lt;sup&gt;-1&lt;/sup&gt; d&lt;sup&gt;−1&lt;/sup&gt;.&lt;/div&gt;&lt;div&gt;The PLFA composition was very sponge-genera dependent and consisted mostly of long-chain fatty acids. Most PLFAs were sponge-specific, followed by bacteria-specific PLFAs, and others.&lt;/div&gt;&lt;div&gt;All sponges, except for &lt;em&gt;Suberites&lt;/em&gt;, were low-microbial abundance (LMA) sponges whose bacterial community composition was dominated by Proteobacteria, Bacteroidota, Planctomycetota, and Nitrospinota. &lt;em&gt;Suberites&lt;/em&gt; consisted of high-microbial abundance (HMA) sponges with Proteobacteria, Chloroflexota, Acidobacteriota, and Actinobacteriota as dominant bacteria.&lt;/div&gt;&lt;div&gt;Based on the inorganic nitrogen flux measurements, we identified three types of nitrogen cycling in the sponges: In type 1, sponges (&lt;em&gt;Dendoricella&lt;/em&gt; spp. indet., &lt;em&gt;Lissodendoryx&lt;/em&gt;) respired aerobically and ammonificated organic matter (OM) to ammonium, fixed N&lt;sub&gt;2&lt;/sub&gt; to ammonium, and nitrified aerobically heterotrophically produced ammonium to nitrate and nitrite. In type 2, sponges (&lt;em&gt;Halichondria&lt;/em&gt; sp., Sceptrulophora, &lt;em&gt;Suberites&lt;/em&gt;, &lt;em&gt;Tedania&lt;/em&gt;) respired OM aerobically and ammonificated it to ammonium. They also reduced nitrate anaerobically to ammonium via dissimilatory nitrate reduction to amm","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"214 ","pages":"Article 104416"},"PeriodicalIF":2.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microbiome of the main deep-water scleractinian reef-framework engineers from the Southwestern Atlantic 西南大西洋主要深水硬骨鱼礁框架工程师的微生物组
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-11-06 DOI: 10.1016/j.dsr.2024.104417
Aline Aparecida Zanotti , Kátia Cristina Cruz Capel , Carla Zilberberg , Marcelo Visentini Kitahara
Deep waters (>150 m) shelter half of the extant diversity of scleractinian corals, including framework reef-forming species. However, to date, the relationship between microorganisms and corals has focused mainly on their zooxanthellate shallow-water counterparts. Here, using 16S rRNA gene amplicon sequencing, we explore the microbiome of all major Atlantic deep-water scleractinian reef framework engineers (Desmophyllum pertusum, Solenosmilia variabilis, Madrepora oculata, and Enallopsammia rostrata), and correlated them with environmental characteristics. Colony fragments of each coral species used in the present study were sampled from three sedimentary basins off the Southeastern coast of Brazil, including two water masses (Antarctic Intermediate Water and South Atlantic Coastal Water). Although representing distant scleractinian evolutionarily lineages, some evolving apart for more than 300Ma, our results suggest a taxonomic homogeneity in their microbial profile. The species-specific microbial core, as well as the core common to all examined species, were identified. Such cores are composed of bacterial genera that have already been observed in other coral species, including those from zooxanthellate species. Such a pattern suggests an active selection of the microbial community by their hosts, a phenomenon that seems to be fundamental for holobiont fitness, especially in long-lived species, such as corals. Besides the microbial core, for all examined species, part of the determined microbiome was flexible and responded to environmental drivers. This flexibility is most probably related to the host's ability to adapt in ecological time scales. Taken together, these holobiont abilities may be crucial to its success in both ecological and geological timescales.
深海(150 米)栖息着现存硬骨珊瑚多样性的一半,包括形成珊瑚礁的框架物种。然而,迄今为止,微生物与珊瑚之间的关系主要集中在浅水同类动物身上。在此,我们利用 16S rRNA 基因扩增片测序技术,探索了大西洋深水硬骨珊瑚礁框架工程师(Desmophyllum pertusum、Solenosmilia variabilis、Madrepora oculata 和 Enallopsammia rostrata)的微生物组,并将其与环境特征相关联。本研究中使用的各珊瑚物种的珊瑚群碎片取自巴西东南沿海的三个沉积盆地,包括两个水体(南极中间水体和南大西洋沿岸水体)。虽然代表的硬骨鱼类进化支系相距甚远,有些支系相隔 300 多万年,但我们的研究结果表明,这些支系的微生物特征在分类学上具有同质性。我们确定了物种特有的微生物核心以及所有受检物种共有的核心。这些核心由细菌属组成,而这些细菌属已经在其他珊瑚物种中观察到,包括那些来自变色贝类物种的细菌属。这种模式表明宿主对微生物群落进行了积极的选择,这种现象似乎是全生物体适应性的基础,尤其是在珊瑚等长寿物种中。除了微生物核心之外,对于所有考察物种来说,部分确定的微生物群落是灵活的,并对环境驱动因素做出反应。这种灵活性很可能与宿主在生态时间尺度上的适应能力有关。综合来看,这些全生物体的能力可能是其在生态和地质时间尺度上取得成功的关键。
{"title":"The microbiome of the main deep-water scleractinian reef-framework engineers from the Southwestern Atlantic","authors":"Aline Aparecida Zanotti ,&nbsp;Kátia Cristina Cruz Capel ,&nbsp;Carla Zilberberg ,&nbsp;Marcelo Visentini Kitahara","doi":"10.1016/j.dsr.2024.104417","DOIUrl":"10.1016/j.dsr.2024.104417","url":null,"abstract":"<div><div>Deep waters (&gt;150 m) shelter half of the extant diversity of scleractinian corals, including framework reef-forming species. However, to date, the relationship between microorganisms and corals has focused mainly on their zooxanthellate shallow-water counterparts. Here, using 16S rRNA gene amplicon sequencing, we explore the microbiome of all major Atlantic deep-water scleractinian reef framework engineers (<em>Desmophyllum pertusum</em>, <em>Solenosmilia variabilis</em>, <em>Madrepora oculata</em>, and <em>Enallopsammia rostrata</em>), and correlated them with environmental characteristics. Colony fragments of each coral species used in the present study were sampled from three sedimentary basins off the Southeastern coast of Brazil, including two water masses (Antarctic Intermediate Water and South Atlantic Coastal Water). Although representing distant scleractinian evolutionarily lineages, some evolving apart for more than 300Ma, our results suggest a taxonomic homogeneity in their microbial profile. The species-specific microbial core, as well as the core common to all examined species, were identified. Such cores are composed of bacterial genera that have already been observed in other coral species, including those from zooxanthellate species. Such a pattern suggests an active selection of the microbial community by their hosts, a phenomenon that seems to be fundamental for holobiont fitness, especially in long-lived species, such as corals. Besides the microbial core, for all examined species, part of the determined microbiome was flexible and responded to environmental drivers. This flexibility is most probably related to the host's ability to adapt in ecological time scales. Taken together, these holobiont abilities may be crucial to its success in both ecological and geological timescales.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"214 ","pages":"Article 104417"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphospace of lanternfish larvae and their interplay with oceanographic conditions from the southeastern Pacific Ocean 东南太平洋灯笼鱼幼体的形态空间及其与海洋条件的相互作用
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-25 DOI: 10.1016/j.dsr.2024.104413
Fernanda S. Orrego , Hugo A. Benítez , Manuel I. Castillo , Nicolás Cumplido , Alejandra Fabres , Yanara Figueroa-González , Claudia Morales , Francisca Zavala-Muñoz , Mauricio F. Landaeta
Lanternfish larval morphology is highly variable probably due to their adaptations to highly variable environmental conditions throughout ontogeny. To study the morphological variability of the larval stage of lanternfishes, samples were collected from the southeast Pacific Ocean between 2014 and 2022. Of the 24 species, nine belonged to the subfamily Lampanyctinae, two to the subfamily Diaphinae, one to the subfamily Notolychinae, one to the subfamily Gymnoscopelinae and 11 to the subfamily Myctophinae. A principal component analysis indicated the presence of body shapes varying from a slender and curved body, and upper jaw oriented downwards, with relatively rounded eyes, to taxa with robust bodies, particularly both the head and trunk, and elongated eyes in a dorsal-ventral plane (PC1 33%). Also, specimens varied from having short jaw, short snout, and slender body, to specimens with larger jaw (reaching behind the eye) and taller snout and trunk (PC2, 23%). Allometric effects were related to variations in body curvature and thickness (Diaphus theta, 12.9%), the curvature of the body and position of the eyes (Lampanyctodes hectoris, 25.1%), lengthening of the jaw and increase in eye size (Diogenichthys atlanticus, 24.6%), and a narrower body and smaller eyes (Hygophum bruuni, 20.5%). Four of the five subfamilies showed covariation between morphometrics and environmental conditions. Diaphinae, Gymnoscopelinae and Lampanyctinae body shape covaried with mean sea temperature of the water column, while Myctophinae larval shape covaried with mean salinity. In conclusion, this study quantifies shape variations during early lanternfish ontogeny from the southeastern Pacific Ocean, identifying main differences and allometric changes between the subfamilies belonging to Myctophidae, with a covariation between the shape of most lanternfish larvae and the environmental conditions experienced by myctophid early stages.
灯笼鱼幼体的形态变化很大,这可能是由于它们在整个个体发育过程中适应了千变万化的环境条件。为了研究灯笼鱼幼体阶段的形态变异,研究人员于 2014 年至 2022 年期间在东南太平洋采集了样本。在这24个物种中,9个属于灯笼鱼亚科,2个属于蝶形亚科,1个属于灯笼鱼亚科,1个属于灯笼鱼亚科,11个属于灯笼鱼亚科。主成分分析表明,这些类群的体型各不相同,有的体型纤细弯曲,上颚朝下,眼睛相对较圆;有的体型粗壮,尤其是头部和躯干,眼睛在背腹平面上拉长(PC1 33%)。此外,标本的形态也各不相同,有的下颌短小、吻部短小、身体细长,有的下颌较大(伸到眼睛后方)、吻部和躯干较高(PC2,23%)。异速效应与身体弧度和厚度的变化(Diaphus theta,12.9%)、身体弧度和眼睛位置的变化(Lampanyctodes hectoris,25.1%)、下颌变长和眼睛增大(Diogenichthys atlanticus,24.6%)以及身体变窄和眼睛变小(Hygophum bruuni,20.5%)有关。五个亚科中有四个亚科的形态计量学与环境条件之间存在共变。Diaphinae、Gymnoscopelinae 和 Lampanyctinae 的体形与水体的平均海水温度相关,而 Myctophinae 的幼体体形与平均盐度相关。总之,这项研究量化了东南太平洋灯笼鱼早期个体发育过程中的体形变化,确定了栉水母亚科之间的主要差异和异速变化,大多数灯笼鱼幼体的体形与栉水母早期阶段所经历的环境条件之间存在共变关系。
{"title":"Morphospace of lanternfish larvae and their interplay with oceanographic conditions from the southeastern Pacific Ocean","authors":"Fernanda S. Orrego ,&nbsp;Hugo A. Benítez ,&nbsp;Manuel I. Castillo ,&nbsp;Nicolás Cumplido ,&nbsp;Alejandra Fabres ,&nbsp;Yanara Figueroa-González ,&nbsp;Claudia Morales ,&nbsp;Francisca Zavala-Muñoz ,&nbsp;Mauricio F. Landaeta","doi":"10.1016/j.dsr.2024.104413","DOIUrl":"10.1016/j.dsr.2024.104413","url":null,"abstract":"<div><div>Lanternfish larval morphology is highly variable probably due to their adaptations to highly variable environmental conditions throughout ontogeny. To study the morphological variability of the larval stage of lanternfishes, samples were collected from the southeast Pacific Ocean between 2014 and 2022. Of the 24 species, nine belonged to the subfamily Lampanyctinae, two to the subfamily Diaphinae, one to the subfamily Notolychinae, one to the subfamily Gymnoscopelinae and 11 to the subfamily Myctophinae. A principal component analysis indicated the presence of body shapes varying from a slender and curved body, and upper jaw oriented downwards, with relatively rounded eyes, to taxa with robust bodies, particularly both the head and trunk, and elongated eyes in a dorsal-ventral plane (PC1 33%). Also, specimens varied from having short jaw, short snout, and slender body, to specimens with larger jaw (reaching behind the eye) and taller snout and trunk (PC2, 23%). Allometric effects were related to variations in body curvature and thickness (<em>Diaphus theta</em>, 12.9%), the curvature of the body and position of the eyes (<em>Lampanyctodes hectoris</em>, 25.1%), lengthening of the jaw and increase in eye size (<em>Diogenichthys atlanticus</em>, 24.6%), and a narrower body and smaller eyes (<em>Hygophum bruuni</em>, 20.5%). Four of the five subfamilies showed covariation between morphometrics and environmental conditions. Diaphinae, Gymnoscopelinae and Lampanyctinae body shape covaried with mean sea temperature of the water column, while Myctophinae larval shape covaried with mean salinity. In conclusion, this study quantifies shape variations during early lanternfish ontogeny from the southeastern Pacific Ocean, identifying main differences and allometric changes between the subfamilies belonging to Myctophidae, with a covariation between the shape of most lanternfish larvae and the environmental conditions experienced by myctophid early stages.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"214 ","pages":"Article 104413"},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of mini warm pool extent on phytoplankton productivity and export in the Arabian sea 小型暖池范围对阿拉伯海浮游植物生产力和出口的影响
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-24 DOI: 10.1016/j.dsr.2024.104406
Nicholas Bock , Joaquim Goes , Hervé Claustre , Vincent Taillandier , Helga do Rosario Gomes
The Arabian Sea is a highly productive tropical ecosystem of the Indian Ocean that supports high fluxes of particulate organic carbon to the mesopelagic zone from two distinct periods of elevated biological productivity associated with the semiannual reversals of the monsoonal wind system. There are now strong indications that the Arabian Sea's monsoonal wind patterns and hydrographic conditions are being impacted by long-term temperature increases, but the consequences of these changes on primary production and carbon export to the mesopelagic zone are unknown. This is especially true for the summer monsoon period when cloud cover obscures much of the Arabian Sea basin and therefore precludes remotely sensed ocean color measurements for estimating phytoplankton biomass and productivity. Here we overcome this limitation by using a database of bio-optical profiles from Biogeochemical Argo floats collected over the last decade to evaluate the impact of interannual temperature increases on Arabian Sea primary production and carbon export. We classify individual years of float observations based on the spatial extent of the Arabian Sea Mini Warm Pool that appears in the southeast Arabian Sea before the onset of the summer monsoon. This Mini Warm Pool, which begins to build in winter and collapses with the onset of the summer monsoon in late spring, has gained considerable interest on account of its influence on the timing of the onset of the summer monsoon. We observed a 35 percent decrease in primary production during the summer monsoon phytoplankton bloom in strong warm pool years, and a 13 percent decrease in particle stocks in the upper mesopelagic zone following the peak of the bloom. Decreases in production and export were additionally accompanied by a decrease in average particle size, indicating a shift from larger cells like diatoms that appear from fertilization of the oligotrophic waters to smaller phytoplankton size classes in response to a deepening of the thermocline and increased stratification of the water column. These results suggest changes in phytoplankton community structure and further decreases in primary production and carbon export in the Arabian Sea in response to future warming.
阿拉伯海是印度洋上一个高产的热带生态系统,与季风系统半年一次的逆转有关的两个不同的生物生产力提升期,支持了颗粒有机碳向中深海区的高通量。目前有明显迹象表明,阿拉伯海的季风模式和水文条件正受到长期温度升高的影响,但这些变化对初级生产和中深海区碳输出的影响尚不清楚。尤其是在夏季季风时期,云层遮蔽了阿拉伯海海盆的大部分区域,因此无法利用遥感海洋颜色测量来估算浮游植物的生物量和生产力。在此,我们利用过去十年收集的生物地球化学 Argo 浮漂的生物光学剖面数据库来评估年际温度上升对阿拉伯海初级生产和碳输出的影响,从而克服了这一局限性。我们根据夏季季风来临前出现在阿拉伯海东南部的阿拉伯海小型暖池的空间范围,对浮标观测的各个年份进行分类。这个小型暖池在冬季开始形成,并随着春末夏季季风的到来而崩溃,由于其对夏季季风到来时间的影响而备受关注。我们观察到,在强暖池年,夏季季风浮游植物绽放期间的初级生产量下降了 35%,绽放高峰过后,中上层水区的颗粒物存量减少了 13%。在产量和出口量减少的同时,平均粒径也在减小,这表明随着温跃层的加深和水体分层的增加,浮游植物的粒径从硅藻等大细胞向小细胞转变,而硅藻等大细胞是在低营养水体受精后出现的。这些结果表明,随着未来气候变暖,阿拉伯海的浮游植物群落结构会发生变化,初级生产和碳输出会进一步减少。
{"title":"Influence of mini warm pool extent on phytoplankton productivity and export in the Arabian sea","authors":"Nicholas Bock ,&nbsp;Joaquim Goes ,&nbsp;Hervé Claustre ,&nbsp;Vincent Taillandier ,&nbsp;Helga do Rosario Gomes","doi":"10.1016/j.dsr.2024.104406","DOIUrl":"10.1016/j.dsr.2024.104406","url":null,"abstract":"<div><div>The Arabian Sea is a highly productive tropical ecosystem of the Indian Ocean that supports high fluxes of particulate organic carbon to the mesopelagic zone from two distinct periods of elevated biological productivity associated with the semiannual reversals of the monsoonal wind system. There are now strong indications that the Arabian Sea's monsoonal wind patterns and hydrographic conditions are being impacted by long-term temperature increases, but the consequences of these changes on primary production and carbon export to the mesopelagic zone are unknown. This is especially true for the summer monsoon period when cloud cover obscures much of the Arabian Sea basin and therefore precludes remotely sensed ocean color measurements for estimating phytoplankton biomass and productivity. Here we overcome this limitation by using a database of bio-optical profiles from Biogeochemical Argo floats collected over the last decade to evaluate the impact of interannual temperature increases on Arabian Sea primary production and carbon export. We classify individual years of float observations based on the spatial extent of the Arabian Sea Mini Warm Pool that appears in the southeast Arabian Sea before the onset of the summer monsoon. This Mini Warm Pool, which begins to build in winter and collapses with the onset of the summer monsoon in late spring, has gained considerable interest on account of its influence on the timing of the onset of the summer monsoon. We observed a 35 percent decrease in primary production during the summer monsoon phytoplankton bloom in strong warm pool years, and a 13 percent decrease in particle stocks in the upper mesopelagic zone following the peak of the bloom. Decreases in production and export were additionally accompanied by a decrease in average particle size, indicating a shift from larger cells like diatoms that appear from fertilization of the oligotrophic waters to smaller phytoplankton size classes in response to a deepening of the thermocline and increased stratification of the water column. These results suggest changes in phytoplankton community structure and further decreases in primary production and carbon export in the Arabian Sea in response to future warming.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"214 ","pages":"Article 104406"},"PeriodicalIF":2.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and description of a remarkable bathypelagic nudibranch, Bathydevius caudactylus, gen. et. sp. nov. 发现并描述一种非凡的深海裸鳃--Bathydevius caudactylus, gen.
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-23 DOI: 10.1016/j.dsr.2024.104414
Bruce H. Robison , Steven H.D. Haddock
We describe an exceptional nudibranch, new to science, from bathypelagic depths in the eastern North Pacific Ocean. More than 100 individuals of Bathydevius caudactylus gen. et. sp. nov. have been observed in the water column at depths between 1013 and 3272 m. Twenty spawning individuals were observed on the seafloor at depths between 2269 and 4009 m. Anatomy, diet, behavior, bioluminescence, and habitat distinguish this surprising nudibranch from all previously described species, and genetic evidence supports its placement in a new family.
我们描述了一种来自北太平洋东部深海水层的特殊裸鳃动物,它是科学界的新发现。我们在水深 1013 米至 3272 米的水体中观察到了 100 多条 Bathydevius caudactylus gen.
{"title":"Discovery and description of a remarkable bathypelagic nudibranch, Bathydevius caudactylus, gen. et. sp. nov.","authors":"Bruce H. Robison ,&nbsp;Steven H.D. Haddock","doi":"10.1016/j.dsr.2024.104414","DOIUrl":"10.1016/j.dsr.2024.104414","url":null,"abstract":"<div><div>We describe an exceptional nudibranch, new to science, from bathypelagic depths in the eastern North Pacific Ocean. More than 100 individuals of <em>Bathydevius caudactylus</em> gen. et. sp. nov. have been observed in the water column at depths between 1013 and 3272 m. Twenty spawning individuals were observed on the seafloor at depths between 2269 and 4009 m. Anatomy, diet, behavior, bioluminescence, and habitat distinguish this surprising nudibranch from all previously described species, and genetic evidence supports its placement in a new family.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"214 ","pages":"Article 104414"},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wintertime productivity and carbon export potential across the Agulhas Current system 阿古哈斯洋流系统的冬季生产力和碳输出潜力
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-13 DOI: 10.1016/j.dsr.2024.104405
Kolisa Yola Sinyanya , Tanya A. Marshall , Raquel F. Flynn , Eesaa Harris , Mhlangabezi Mdutyana , Raymond Roman , David R. Walker , Sina Wallschuss , Sarah E. Fawcett
The Agulhas Current plays a major role in heat and salt exchange between the Indian and Atlantic Oceans, yet little is known of its influence on ocean fertility. To investigate carbon production and export potential in the Agulhas Current system, we measured net primary production (NPP), nitrate and ammonium uptake, N2 fixation, and nitrification along a transect of the current and adjacent subtropical subgyre (33.4°S–35.7°S) in winter when nutrient supply, and thus productivity, should be highest. Phytoplankton biomass was lowest in the current core, increasing into the subgyre as surface nitrate declined, and was dominated by nanoplankton (2.7–10 μm; 62 ± 5.1% of total biomass). NPP and nitrate uptake were generally high across the transect and increased from the current core into the subgyre; the rates were dominated by picoplankton (<2.7 μm; 53–93%) in the current core and nanoplankton elsewhere (63–69%). On average, euphotic zone nitrification supplied 7.6 ± 6.4% of the nitrate consumed by phytoplankton and N2 fixation was also low (2.1 ± 1.3% of new production); we thus consider nitrate uptake a reasonable proxy for new production, at least in winter. Nitrate uptake was highest at the southern edge of the current core, consistent with current-associated (sub)mesoscale mixing enhancing the upward nutrient supply. The fraction of NPP available for export (i.e., the f-ratio) was high across the transect, ranging from 0.44 to 0.69. Our data thus indicate that both total and new production are elevated across the Agulhas Current system in winter and suggest that the (sub)mesoscale dynamics associated with the current system may enhance carbon production and export in the otherwise oligotrophic southwest Indian Ocean.
阿古哈斯洋流在印度洋和大西洋之间的热量和盐分交换中发挥着重要作用,但人们对其对海洋肥力的影响却知之甚少。为了研究阿古哈斯洋流系统的碳生产和输出潜力,我们在冬季养分供应量最高的时候,沿洋流横断面和邻近的亚热带亚地层(33.4°S-35.7°S)测量了净初级生产量(NPP)、硝酸盐和铵吸收量、N2 固定量和硝化作用。浮游植物生物量在海流核心区最低,随着海流表面硝酸盐的减少,浮游植物生物量在亚层有所增加,并且以纳米浮游植物(2.7-10 μm;占总生物量的 62 ± 5.1%)为主。整个横断面的 NPP 和硝酸盐吸收率普遍较高,并从海流核心区向次深海区增加;海流核心区的吸收率以微浮游生物(2.7 μm;53-93%)为主,其他区域则以纳浮游生物(63-69%)为主。平均而言,浮游植物消耗的硝酸盐中,7.6 ± 6.4% 来自于透光区硝化作用,N2 固定也很低(2.1 ± 1.3% 来自于新生成量);因此,我们认为硝酸盐吸收量是新生成量的合理代表,至少在冬季是如此。在海流核心的南部边缘,硝酸盐吸收量最高,这与海流相关的(亚)中尺度混合加强了向上的营养供应是一致的。在整个横断面上,可用于输出的 NPP 分数(即 f 比值)很高,从 0.44 到 0.69 不等。因此,我们的数据表明,整个阿古哈斯洋流系统冬季的总产量和新产量都很高,并表明与洋流系统相关的(亚)中尺度动力学可能会提高原本低营养的西南印度洋的碳生产和碳输出。
{"title":"Wintertime productivity and carbon export potential across the Agulhas Current system","authors":"Kolisa Yola Sinyanya ,&nbsp;Tanya A. Marshall ,&nbsp;Raquel F. Flynn ,&nbsp;Eesaa Harris ,&nbsp;Mhlangabezi Mdutyana ,&nbsp;Raymond Roman ,&nbsp;David R. Walker ,&nbsp;Sina Wallschuss ,&nbsp;Sarah E. Fawcett","doi":"10.1016/j.dsr.2024.104405","DOIUrl":"10.1016/j.dsr.2024.104405","url":null,"abstract":"<div><div>The Agulhas Current plays a major role in heat and salt exchange between the Indian and Atlantic Oceans, yet little is known of its influence on ocean fertility. To investigate carbon production and export potential in the Agulhas Current system, we measured net primary production (NPP), nitrate and ammonium uptake, N<sub>2</sub> fixation, and nitrification along a transect of the current and adjacent subtropical subgyre (33.4°S–35.7°S) in winter when nutrient supply, and thus productivity, should be highest. Phytoplankton biomass was lowest in the current core, increasing into the subgyre as surface nitrate declined, and was dominated by nanoplankton (2.7–10 μm; 62 ± 5.1% of total biomass). NPP and nitrate uptake were generally high across the transect and increased from the current core into the subgyre; the rates were dominated by picoplankton (&lt;2.7 μm; 53–93%) in the current core and nanoplankton elsewhere (63–69%). On average, euphotic zone nitrification supplied 7.6 ± 6.4% of the nitrate consumed by phytoplankton and N<sub>2</sub> fixation was also low (2.1 ± 1.3% of new production); we thus consider nitrate uptake a reasonable proxy for new production, at least in winter. Nitrate uptake was highest at the southern edge of the current core, consistent with current-associated (sub)mesoscale mixing enhancing the upward nutrient supply. The fraction of NPP available for export (i.e., the <em>f</em>-ratio) was high across the transect, ranging from 0.44 to 0.69. Our data thus indicate that both total and new production are elevated across the Agulhas Current system in winter and suggest that the (sub)mesoscale dynamics associated with the current system may enhance carbon production and export in the otherwise oligotrophic southwest Indian Ocean.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104405"},"PeriodicalIF":2.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual changes in nutrient and phytoplankton dynamics in the Eastern Mediterranean Sea (EMS) predict the consequences of climate change; results from the Sdot-Yam Time-series station 2018–2022 东地中海(EMS)营养物质和浮游植物动态的年际变化预测气候变化的后果;斯多特-亚姆时间序列站 2018-2022 年的结果
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-10 DOI: 10.1016/j.dsr.2024.104403
Tal Ben Ezra , Alon Blachinsky , Shiran Gozali , Anat Tsemel , Yotam Fadida , Dan Tchernov , Yoav Lehahn , Tatiana Margo Tsagaraki , Ilana Berman-Frank , Michael Krom
Global climate change is predicted to reduce nutrient fluxes into the photic zone, particularly in tropical and subtropical ocean gyres, while the occasional major storms will result in increased nutrient pulses. In this study the nutrient and phytoplankton dynamics have been determined at a new time-series station in the southeastern Levantine basin of the Eastern Mediterranean Sea (EMS) over 4.5 years (2017–2022). In 2018 and 2019, there was a moderate concentration of residual nitrate and nitrite (N + N) in the photic zone (280–410 nM) in winter, resulting in phytoplankton dynamics dominated by cyanobacteria with relatively few picoeukaryotes (280 ± 90 μgC m−2). Winter storm driven mixing was much reduced in 2020 and particularly in 2021, resulting in a lower concentration of N + N in the photic zone, which decreased during summer stratification, such that by August 2021, the N + N was highly depleted (<60 nM) resulting in an integrated phytoplankton biomass of 23 μgC m−2. A major storm in December 2021 (Storm Carmel) injected high N + N (750 nM; max = 1090 nM) in the upper 100 m, which stimulated pico and nanophytoplankton biomass (∼2400 μgC m−2) and according to our inference increased eukaryotes (diatoms). The pattern of measured silica reinforced our conclusion that we sampled 3 different nutrient and ecosystem states. Phosphate was always at or close to limit of detection (LoD) because of rapid uptake by cyanobacteria into their periplasm. These results predict that climate change in the EMS will result in periods of nutrient and phytoplankton depletion (Famine) interrupted by short periods of Mesotrophy (Feast) caused by major storms.
据预测,全球气候变化将减少进入光照区的营养通量,尤其是在热带和亚热带海洋涡旋中,而偶尔发生的大风暴将导致营养脉冲增加。本研究在东地中海(EMS)黎凡特盆地东南部的一个新时间序列站测定了 4.5 年(2017-2022 年)的营养物和浮游植物动态。在 2018 年和 2019 年,冬季光照区存在中等浓度的残余硝酸盐和亚硝酸盐(N + N)(280-410 nM),导致浮游植物动态以蓝藻为主,微藻相对较少(280 ± 90 μgC m-2)。2020 年,尤其是 2021 年,冬季风暴驱动的混合作用大大减弱,导致光照区的 N + N 浓度降低,在夏季分层过程中,N + N 浓度降低,到 2021 年 8 月,N + N 高度耗竭(60 nM),浮游植物综合生物量为 23 μgC m-2。2021 年 12 月的一场大风暴(卡梅尔风暴)在上层 100 米处注入了大量 N + N(750 nM;最大值 = 1090 nM),这刺激了微小和纳米浮游植物的生物量(∼2400 μgC m-2),并根据我们的推断增加了真核生物(硅藻)。所测得的二氧化硅模式进一步证实了我们的结论,即我们采集了 3 种不同的营养和生态系统状态的样本。磷酸盐始终处于或接近检测极限(LoD),这是因为蓝藻对磷酸盐的吸收速度很快。这些结果预测,EMS 中的气候变化将导致营养物质和浮游植物枯竭期(饥荒期),并被大风暴引起的短时间中营养期(盛宴期)所打断。
{"title":"Interannual changes in nutrient and phytoplankton dynamics in the Eastern Mediterranean Sea (EMS) predict the consequences of climate change; results from the Sdot-Yam Time-series station 2018–2022","authors":"Tal Ben Ezra ,&nbsp;Alon Blachinsky ,&nbsp;Shiran Gozali ,&nbsp;Anat Tsemel ,&nbsp;Yotam Fadida ,&nbsp;Dan Tchernov ,&nbsp;Yoav Lehahn ,&nbsp;Tatiana Margo Tsagaraki ,&nbsp;Ilana Berman-Frank ,&nbsp;Michael Krom","doi":"10.1016/j.dsr.2024.104403","DOIUrl":"10.1016/j.dsr.2024.104403","url":null,"abstract":"<div><div>Global climate change is predicted to reduce nutrient fluxes into the photic zone, particularly in tropical and subtropical ocean gyres, while the occasional major storms will result in increased nutrient pulses. In this study the nutrient and phytoplankton dynamics have been determined at a new time-series station in the southeastern Levantine basin of the Eastern Mediterranean Sea (EMS) over 4.5 years (2017–2022). In 2018 and 2019, there was a moderate concentration of residual nitrate and nitrite (N + N) in the photic zone (280–410 nM) in winter, resulting in phytoplankton dynamics dominated by cyanobacteria with relatively few picoeukaryotes (280 ± 90 μgC m<sup>−2</sup>). Winter storm driven mixing was much reduced in 2020 and particularly in 2021, resulting in a lower concentration of N + N in the photic zone, which decreased during summer stratification, such that by August 2021, the N + N was highly depleted (&lt;60 nM) resulting in an integrated phytoplankton biomass of 23 μgC m<sup>−2</sup>. A major storm in December 2021 (Storm Carmel) injected high N + N (750 nM; max = 1090 nM) in the upper 100 m, which stimulated pico and nanophytoplankton biomass (∼2400 μgC m<sup>−2</sup>) and according to our inference increased eukaryotes (diatoms). The pattern of measured silica reinforced our conclusion that we sampled 3 different nutrient and ecosystem states. Phosphate was always at or close to limit of detection (LoD) because of rapid uptake by cyanobacteria into their periplasm. These results predict that climate change in the EMS will result in periods of nutrient and phytoplankton depletion (Famine) interrupted by short periods of Mesotrophy (Feast) caused by major storms.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104403"},"PeriodicalIF":2.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscale ocean eddies determine dispersal and connectivity of corals at the RMS Titanic wreck site 中尺度海洋漩涡决定了泰坦尼克号沉船遗址珊瑚的扩散和连通性
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-10-03 DOI: 10.1016/j.dsr.2024.104404
Tobias Schulzki , Lea-Anne Henry , J. Murray Roberts , Maria Rakka , Steve W. Ross , Arne Biastoch
The sinking of the RMS Titanic on 15 April 1912 remains one of most iconic maritime disasters in history. Today, the wreck site lies in waters 3800 m deep approximately 690 km south southeast of Newfoundland, Atlantic Canada. The wreck and debris field have been colonized by many marine organisms including the octocoral Chrysogorgia agassizii. Because of the rapid deterioration of the Titanic and the vulnerability of natural deep-sea coral populations to environmental changes, it is vital to understand the role the Titanic as well as other such structures could play in connecting ecosystems along the North American slope. Based on Lagrangian experiments with more than one million virtual particles and different scenarios for larval behavior, given the uncertainties around the biology of chrysogorgiids, the dispersal of larvae spawned at the Titanic wreck is studied in a high-resolution numerical ocean model. While the large-scale bathymetry shields the Titanic from a strong mean flow, mesoscale ocean eddies can considerably affect the deep circulation and cause a significant speed up, or also a reversal, of the circulation. As a consequence, the position of upper and mid-ocean eddies in the model largely controls the direction and distance of larval dispersal, with the impact of eddies outweighing the importance of active larval swimming in our experiments. Although dependent on larval buoyancy and longevity, we find that the Titanic could be reached by larvae spawned on the upper slope east of the Grand Banks. Therefore, the Titanic could act as a stepping stone connecting the upper to the deep continental slope off Newfoundland. From the Titanic, larvae then spread into deep Canadian waters and areas beyond national jurisdiction.
1912 年 4 月 15 日沉没的泰坦尼克号皇家邮轮仍然是历史上最具标志性的海难之一。如今,沉船地点位于加拿大大西洋纽芬兰东南约 690 公里处 3800 米深的水域。沉船和残骸区已被包括章鱼 Chrysogorgia agassizii 在内的许多海洋生物所占据。由于泰坦尼克号的迅速损坏以及天然深海珊瑚种群对环境变化的脆弱性,了解泰坦尼克号以及其他类似结构在连接北美斜坡生态系统方面可能发挥的作用至关重要。考虑到金眼鲷生物学的不确定性,研究人员在拉格朗日实验的基础上,利用 100 多万个虚拟粒子和不同的幼虫行为方案,在高分辨率数值海洋模型中研究了泰坦尼克号沉船上产卵的幼虫的扩散情况。虽然大尺度的水深为泰坦尼克号挡住了强大的平均流,但中尺度的海洋漩涡会对深层环流产生很大影响,导致环流明显加速或逆转。因此,模型中上层和中层海洋漩涡的位置在很大程度上控制着幼虫的扩散方向和距离,在我们的实验中,漩涡的影响超过了幼虫主动游动的重要性。虽然取决于幼虫的浮力和寿命,但我们发现在大浅滩以东上坡产卵的幼虫可以到达泰坦尼克号。因此,泰坦尼克号可以作为连接纽芬兰沿海上坡和深大陆坡的踏脚石。然后,幼虫从泰坦尼克号扩散到加拿大深海和国家管辖范围以外的地区。
{"title":"Mesoscale ocean eddies determine dispersal and connectivity of corals at the RMS Titanic wreck site","authors":"Tobias Schulzki ,&nbsp;Lea-Anne Henry ,&nbsp;J. Murray Roberts ,&nbsp;Maria Rakka ,&nbsp;Steve W. Ross ,&nbsp;Arne Biastoch","doi":"10.1016/j.dsr.2024.104404","DOIUrl":"10.1016/j.dsr.2024.104404","url":null,"abstract":"<div><div>The sinking of the RMS <em>Titanic</em> on 15 April 1912 remains one of most iconic maritime disasters in history. Today, the wreck site lies in waters 3800 m deep approximately 690 km south southeast of Newfoundland, Atlantic Canada. The wreck and debris field have been colonized by many marine organisms including the octocoral <em>Chrysogorgia agassizii</em>. Because of the rapid deterioration of the <em>Titanic</em> and the vulnerability of natural deep-sea coral populations to environmental changes, it is vital to understand the role the <em>Titanic</em> as well as other such structures could play in connecting ecosystems along the North American slope. Based on Lagrangian experiments with more than one million virtual particles and different scenarios for larval behavior, given the uncertainties around the biology of <em>chrysogorgiids</em>, the dispersal of larvae spawned at the <em>Titanic</em> wreck is studied in a high-resolution numerical ocean model. While the large-scale bathymetry shields the <em>Titanic</em> from a strong mean flow, mesoscale ocean eddies can considerably affect the deep circulation and cause a significant speed up, or also a reversal, of the circulation. As a consequence, the position of upper and mid-ocean eddies in the model largely controls the direction and distance of larval dispersal, with the impact of eddies outweighing the importance of active larval swimming in our experiments. Although dependent on larval buoyancy and longevity, we find that the <em>Titanic</em> could be reached by larvae spawned on the upper slope east of the Grand Banks. Therefore, the <em>Titanic</em> could act as a stepping stone connecting the upper to the deep continental slope off Newfoundland. From the <em>Titanic</em>, larvae then spread into deep Canadian waters and areas beyond national jurisdiction.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104404"},"PeriodicalIF":2.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photophysiological status of phytoplankton communities in different types of eddies during winter in the western Pacific Ocean 西太平洋冬季不同类型漩涡中浮游植物群落的光生理状况
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-09-24 DOI: 10.1016/j.dsr.2024.104402
Jiang Gui , Yingjie Mao , Jun Sun , Mao Lin
The Western Pacific Ocean (WPO) is one of the most active eddy regions in the world, where a variety of ocean processes are frequently observed, but little research has been conducted on the phytoplankton communities and their photosynthetic physiological status within the eddies in this region. The bio-optical parameters of phytoplankton communities and their physiological status within the warm core and cold core eddies of the WPO during the winter of 2021 were investigated based on fast repetition rate fluorometry (FRRF). In this paper, environmental factors, phytoplankton community parameters, chlorophyll a (Chl a), and various bio-optical parameters were investigated for two opposite types of eddies at the WPO. The results show the maximum [Fv/Fm, 0.18 to 0.26 (warm eddy), 0.14 to 0.28 (cold eddy)] and effective photosynthetic efficiency [Fq'/Fm', 0.11 to 0.23 (warm eddy), 0.10 to 0.27 (cold eddy)] of the DCM for both warm and cold eddies, the electron transport rates ETRRCII [0.002–6.18 mol e mol RCII−1 s−1 (warm eddy), 0.002–4.94 mol e mol RCII−1 s−1 (cold eddy)] and the primary production potential PPmax [0.68–118.19 mg C (mg Chl a)−1 day−1 (warm eddy), 2.47–243.49 mg C (mg Chl a)−1 day−1 (cold eddy)] for different types eddies. In warm eddy, temperature and Chl a concentrations had significant effects on Fv/Fm and Fq'/Fm', while in cold eddy the correlation of Fv/Fm and Fq'/Fm' with temperature was not significant, and Fv/Fm was significantly negatively correlated with DIP only. Light was the main variable affecting the electron transport capacity and primary production potential of the phytoplankton community in the eddies, while larger cyanobacteria and dinoflagellates contributed significantly to the primary production potential of the cold eddy. In addition, both eddies centers had higher primary production potentials, with the cold eddy had a higher primary production potential than the warm eddy, based on microscopic analysis this phenomenon may be due to differences in electron transfer rates between phytoplankton communities.
西太平洋(WPO)是世界上最活跃的漩涡区之一,经常观测到各种海洋过程,但对该区域漩涡内浮游植物群落及其光合生理状态的研究却很少。本文基于快速重复速率荧光测定法(FRRF),研究了 2021 年冬季 WPO 暖核心漩涡和冷核心漩涡内浮游植物群落的生物光学参数及其生理状态。本文研究了西太平洋海域两种相反类型漩涡的环境因子、浮游植物群落参数、叶绿素 a(Chl a)以及各种生物光学参数。结果表明,暖涡和冷涡中 DCM 的最大值[Fv/Fm,0.18-0.26(暖涡),0.14-0.28(冷涡)]和有效光合效率[Fq'/Fm',0.11-0.23(暖涡),0.10-0.27(冷涡)]、电子传输速率 ETRRCII [0.002-6.18 mol e- mol RCII-1 s-1 (暖涡), 0.002-4.94 mol e- mol RCII-1 s-1 (冷涡)]和初级生产潜力 PPmax [0.68-118.19 mg C (mg Chl a)-1 day-1 (暖涡), 2.47-243.49 mg C (mg Chl a)-1 day-1 (冷涡)]。在暖涡中,温度和 Chl a 浓度对 Fv/Fm 和 Fq'/Fm' 有显著影响,而在冷涡中,Fv/Fm 和 Fq'/Fm' 与温度的相关性不显著,Fv/Fm 仅与 DIP 显著负相关。光照是影响漩涡中浮游植物群落电子传递能力和初级生产潜力的主要变量,而大型蓝藻和甲藻则对冷漩涡的初级生产潜力有重要贡献。此外,两个漩涡中心都具有较高的初级生产潜力,冷漩涡的初级生产潜力高于暖漩涡,根据微观分析,这一现象可能是由于浮游植物群落间电子传递速率的差异造成的。
{"title":"Photophysiological status of phytoplankton communities in different types of eddies during winter in the western Pacific Ocean","authors":"Jiang Gui ,&nbsp;Yingjie Mao ,&nbsp;Jun Sun ,&nbsp;Mao Lin","doi":"10.1016/j.dsr.2024.104402","DOIUrl":"10.1016/j.dsr.2024.104402","url":null,"abstract":"<div><div>The Western Pacific Ocean (WPO) is one of the most active eddy regions in the world, where a variety of ocean processes are frequently observed, but little research has been conducted on the phytoplankton communities and their photosynthetic physiological status within the eddies in this region. The bio-optical parameters of phytoplankton communities and their physiological status within the warm core and cold core eddies of the WPO during the winter of 2021 were investigated based on fast repetition rate fluorometry (FRRF). In this paper, environmental factors, phytoplankton community parameters, chlorophyll <em>a</em> (Chl <em>a</em>), and various bio-optical parameters were investigated for two opposite types of eddies at the WPO. The results show the maximum [Fv/Fm, 0.18 to 0.26 (warm eddy), 0.14 to 0.28 (cold eddy)] and effective photosynthetic efficiency [Fq'/Fm', 0.11 to 0.23 (warm eddy), 0.10 to 0.27 (cold eddy)] of the DCM for both warm and cold eddies, the electron transport rates ETR<sub>RCII</sub> [0.002–6.18 mol e<sup>−</sup> mol RCII<sup>−1</sup> s<sup>−1</sup> (warm eddy), 0.002–4.94 mol e<sup>−</sup> mol RCII<sup>−1</sup> s<sup>−1</sup> (cold eddy)] and the primary production potential <em>PP</em><sub>max</sub> [0.68–118.19 mg C (mg Chl <em>a</em>)<sup>−1</sup> day<sup>−1</sup> (warm eddy), 2.47–243.49 mg C (mg Chl <em>a</em>)<sup>−1</sup> day<sup>−1</sup> (cold eddy)] for different types eddies. In warm eddy, temperature and Chl <em>a</em> concentrations had significant effects on Fv/Fm and Fq'/Fm', while in cold eddy the correlation of Fv/Fm and Fq'/Fm' with temperature was not significant, and Fv/Fm was significantly negatively correlated with DIP only. Light was the main variable affecting the electron transport capacity and primary production potential of the phytoplankton community in the eddies, while larger cyanobacteria and dinoflagellates contributed significantly to the primary production potential of the cold eddy. In addition, both eddies centers had higher primary production potentials, with the cold eddy had a higher primary production potential than the warm eddy, based on microscopic analysis this phenomenon may be due to differences in electron transfer rates between phytoplankton communities.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104402"},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of deep-seawater samplers: Principles, applications, performance, and trends 深海取样器综述:原理、应用、性能和趋势
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2024-09-12 DOI: 10.1016/j.dsr.2024.104401
Shijun Wu , Zhiheng Chen , Shuo Wang , Jian Zhang , Canjun Yang

Research on deep seawater is of great importance to marine chemistry, biology, and climate science studies. Sample analysis is the fundamental and most effective method for deep-seawater research, and it is essential to collect high-quality water samples for the scientific community. Over nearly a century, various deep-seawater samplers have been developed to meet different research needs. This study provides a comprehensive review of deep-seawater sampling technology and instruments to highlight the associated research background and importance, summarize sampling principles, and categorize typical samplers. This review focuses on the key technologies that deep-seawater samplers perform, including sealing, pressure maintenance, and temperature maintenance. Finally, prospects are presented in terms of three aspects: high fidelity, long-term series sampling, and precise sampling using autonomous underwater vehicles. This review can serve as a reference to achieve the precise sampling of deep seawater with high fidelity and spatiotemporal resolution in the future.

深层海水研究对海洋化学、生物学和气候科学研究具有重要意义。样品分析是深海研究最基本、最有效的方法,为科学界采集高质量的水样至关重要。近一个世纪以来,人们开发了各种深海取样器,以满足不同的研究需求。本研究对深海取样技术和仪器进行了全面回顾,重点介绍了相关研究背景和重要性,总结了取样原理,并对典型取样器进行了分类。本综述重点介绍了深海取样器的关键技术,包括密封、压力维持和温度维持。最后,从高保真、长期系列取样和使用自主潜水器进行精确取样三个方面介绍了前景。本综述可作为未来实现高保真、高时空分辨率深层海水精确采样的参考。
{"title":"A review of deep-seawater samplers: Principles, applications, performance, and trends","authors":"Shijun Wu ,&nbsp;Zhiheng Chen ,&nbsp;Shuo Wang ,&nbsp;Jian Zhang ,&nbsp;Canjun Yang","doi":"10.1016/j.dsr.2024.104401","DOIUrl":"10.1016/j.dsr.2024.104401","url":null,"abstract":"<div><p>Research on deep seawater is of great importance to marine chemistry, biology, and climate science studies. Sample analysis is the fundamental and most effective method for deep-seawater research, and it is essential to collect high-quality water samples for the scientific community. Over nearly a century, various deep-seawater samplers have been developed to meet different research needs. This study provides a comprehensive review of deep-seawater sampling technology and instruments to highlight the associated research background and importance, summarize sampling principles, and categorize typical samplers. This review focuses on the key technologies that deep-seawater samplers perform, including sealing, pressure maintenance, and temperature maintenance. Finally, prospects are presented in terms of three aspects: high fidelity, long-term series sampling, and precise sampling using autonomous underwater vehicles. This review can serve as a reference to achieve the precise sampling of deep seawater with high fidelity and spatiotemporal resolution in the future.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104401"},"PeriodicalIF":2.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Deep-Sea Research Part I-Oceanographic Research Papers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1