Synergistically-mediated highly-efficient visible-light-driven hydrogen evolution activity using Ohmic/Schottky-type dual-junctions and sulfur vacancy

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-03 DOI:10.1016/j.jcis.2024.09.006
{"title":"Synergistically-mediated highly-efficient visible-light-driven hydrogen evolution activity using Ohmic/Schottky-type dual-junctions and sulfur vacancy","authors":"","doi":"10.1016/j.jcis.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Enabling highly-efficient multiplex-optimization photocatalysts is critical to overcome the bottlenecks of hydrogen evolution reaction efficiency and photostability. Herein, novel CoS/S<sub>v</sub>-ZnIn<sub>2</sub>S<sub>4</sub>/MoS<sub>2</sub> composites are successfully synthesized through an <em>in situ</em> technique. Taking advantage of the synergistic effect of sulfur vacancy, Schottky-type MoS<sub>2</sub>/S<sub>v</sub>-ZnIn<sub>2</sub>S<sub>4</sub> junction and Ohmic-type CoS/S<sub>v</sub>-ZnIn<sub>2</sub>S<sub>4</sub> junction, the light absorption, electron/hole separation efficiency, charge transfer rate and hydrogen reduction reaction dynamic can be significantly enhanced. As a result, an impressive photocatalytic hydrogen evolution rate of 18.43 mmol g<sup>−1</sup> h<sup>−1</sup> is achieved under the visible-light irradiation. Furthermore, apparent quantum efficiencies of 72.14 % and 9.91 % are also achieved under 350 and 420 nm monochromatic light irradiation. This work presents an <em>in situ</em> perspective to design multiplex-optimization photocatalytic system for highly-efficient hydrogen production.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724020642","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enabling highly-efficient multiplex-optimization photocatalysts is critical to overcome the bottlenecks of hydrogen evolution reaction efficiency and photostability. Herein, novel CoS/Sv-ZnIn2S4/MoS2 composites are successfully synthesized through an in situ technique. Taking advantage of the synergistic effect of sulfur vacancy, Schottky-type MoS2/Sv-ZnIn2S4 junction and Ohmic-type CoS/Sv-ZnIn2S4 junction, the light absorption, electron/hole separation efficiency, charge transfer rate and hydrogen reduction reaction dynamic can be significantly enhanced. As a result, an impressive photocatalytic hydrogen evolution rate of 18.43 mmol g−1 h−1 is achieved under the visible-light irradiation. Furthermore, apparent quantum efficiencies of 72.14 % and 9.91 % are also achieved under 350 and 420 nm monochromatic light irradiation. This work presents an in situ perspective to design multiplex-optimization photocatalytic system for highly-efficient hydrogen production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用欧姆/肖特基型双结和硫空位协同介导的高效可见光驱动氢气进化活性
高效的多重优化光催化剂对于克服氢气进化反应效率和光稳定性的瓶颈至关重要。本文通过原位技术成功合成了新型 CoS/Sv-ZnIn2S4/MoS2 复合材料。利用硫空位、肖特基型 MoS2/Sv-ZnIn2S4 结和欧姆型 CoS/Sv-ZnIn2S4 结的协同效应,可显著提高光吸收、电子/空穴分离效率、电荷转移速率和氢还原反应动态。因此,在可见光照射下,光催化氢进化率达到了惊人的 18.43 mmol g-1 h-1。此外,在 350 纳米和 420 纳米单色光照射下,表观量子效率也分别达到了 72.14 % 和 9.91 %。这项研究从原位角度提出了一种设计多重优化光催化系统以实现高效制氢的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. Editorial Board Outside Front Cover Photothermal-assisted magnetic recoverable Cd0.9Zn0.1S/NiCoB heterojunction with extraordinary photocatalytic hydrogen evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1