{"title":"Photothermal-assisted magnetic recoverable Cd0.9Zn0.1S/NiCoB heterojunction with extraordinary photocatalytic hydrogen evolution","authors":"","doi":"10.1016/j.jcis.2024.09.080","DOIUrl":null,"url":null,"abstract":"<div><p>Easily recyclable photocatalysts hold great potential in the field of photocatalysis. Guided by rational theoretical predictions, this study designs a novel tetrapod-like Cd<sub>0.9</sub>Zn<sub>0.1</sub>S/NiCoB (CZS/NCB) Schottky heterojunction with magnetic and photothermal properties, and demonstrates its excellent photocatalytic hydrogen evolution performance. Under the combined effects of the photothermal properties and the Schottky heterojunction, the photocatalytic hydrogen evolution rate extraordinarily reaches 108.39 mmol g<sup>−1</sup> h<sup>−1</sup> after 3 h of visible light irradiation, which is 4.69 times that of pure CZS. Additionally, photocatalytic hydrogen evolution tests conducted using infrared thermography and alternating visible and visible plus infrared light irradiation have confirmed the material’s outstanding photothermal properties. In-depth density functional theory (DFT) calculations reveal potential charge transfer pathways and confirm the formation of the Schottky heterojunction. This work provides guidance for the rational construction of magnetic recoverable photocatalysts with practical application.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724021465","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Easily recyclable photocatalysts hold great potential in the field of photocatalysis. Guided by rational theoretical predictions, this study designs a novel tetrapod-like Cd0.9Zn0.1S/NiCoB (CZS/NCB) Schottky heterojunction with magnetic and photothermal properties, and demonstrates its excellent photocatalytic hydrogen evolution performance. Under the combined effects of the photothermal properties and the Schottky heterojunction, the photocatalytic hydrogen evolution rate extraordinarily reaches 108.39 mmol g−1 h−1 after 3 h of visible light irradiation, which is 4.69 times that of pure CZS. Additionally, photocatalytic hydrogen evolution tests conducted using infrared thermography and alternating visible and visible plus infrared light irradiation have confirmed the material’s outstanding photothermal properties. In-depth density functional theory (DFT) calculations reveal potential charge transfer pathways and confirm the formation of the Schottky heterojunction. This work provides guidance for the rational construction of magnetic recoverable photocatalysts with practical application.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies