Bo Li , Shuai Zhang , Liang Zhang , Xiaobing Shang , Chi Han , Yao Zhang
{"title":"Robust sensing matrix design for the Orthogonal Matching Pursuit algorithm in compressive sensing","authors":"Bo Li , Shuai Zhang , Liang Zhang , Xiaobing Shang , Chi Han , Yao Zhang","doi":"10.1016/j.sigpro.2024.109684","DOIUrl":null,"url":null,"abstract":"<div><p>In compressive sensing, Orthogonal Matching Pursuit (OMP) is a greedy algorithm used for recovering sparse signals from their incomplete linear measurements. Conventionally, the OMP algorithm relies on both the measurement matrix and the measurement signal to reconstruct sparse signals. A sensing matrix can be designed to have a small mutual coherence with respect to (w.r.t.) the measurement matrix, which is used to boost the performance of the OMP algorithm in sparse signal reconstruction. Nevertheless, sensing matrices designed by current methods are vulnerable to measurement noises. In this paper, we begin by examining the underlying cause of the non-robustness to measurement noises exhibited by these sensing matrices. Subsequently, we propose a novel approach to design a robust sensing matrix capable of withstanding the influence of measurement noises. Finally, we conduct numerical simulations to demonstrate the effectiveness and robustness of the sensing matrix designed by the proposed method.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109684"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003049","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In compressive sensing, Orthogonal Matching Pursuit (OMP) is a greedy algorithm used for recovering sparse signals from their incomplete linear measurements. Conventionally, the OMP algorithm relies on both the measurement matrix and the measurement signal to reconstruct sparse signals. A sensing matrix can be designed to have a small mutual coherence with respect to (w.r.t.) the measurement matrix, which is used to boost the performance of the OMP algorithm in sparse signal reconstruction. Nevertheless, sensing matrices designed by current methods are vulnerable to measurement noises. In this paper, we begin by examining the underlying cause of the non-robustness to measurement noises exhibited by these sensing matrices. Subsequently, we propose a novel approach to design a robust sensing matrix capable of withstanding the influence of measurement noises. Finally, we conduct numerical simulations to demonstrate the effectiveness and robustness of the sensing matrix designed by the proposed method.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.