Robust algorithms for spherical angle-of-arrival source localization

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-08-30 DOI:10.1016/j.sigpro.2024.109685
Tianyu Zhang , Pengxiao Teng , Jun Lyu , Jun Yang
{"title":"Robust algorithms for spherical angle-of-arrival source localization","authors":"Tianyu Zhang ,&nbsp;Pengxiao Teng ,&nbsp;Jun Lyu ,&nbsp;Jun Yang","doi":"10.1016/j.sigpro.2024.109685","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of traditional algorithms for spherical angle-of-arrival (AOA) source localization will be significantly degraded when there are outliers in the angle measurements. By using the symmetric <span><math><mi>α</mi></math></span>-stable (<span><math><mrow><mi>S</mi><mi>α</mi><mi>S</mi></mrow></math></span>) distribution to describe the measurement noise containing outliers and constructing the cost function using the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm, we propose a robust algorithm for spherical AOA source localization: the spherical iteratively reweighted pseudolinear estimator (SIRPLE). The SIRPLE is similar to the iteratively reweighted least squares (IRLS), with the difference that a homogeneous least squares (HLS) problem is solved in each iteration. The SIRPLE suffers from bias problems owing to the nature of the pseudolinear estimators. To overcome this problem, the instrumental variable (IV) method is introduced and the spherical iteratively reweighted instrumental variable estimator (SIRIVE) is proposed. Theoretical analysis shows that the SIRIVE is asymptotically unbiased and it can achieve the theoretical error covariance of the constrained least <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm estimation. Extensive simulation analyses demonstrate the better performance of the SIRIVE compared to the conventional spherical AOA source localization methods and the SIRPLE under <span><math><mrow><mi>S</mi><mi>α</mi><mi>S</mi></mrow></math></span> noise environment. The performance of the SIRIVE is similar to that of the Nelder–Mead algorithm (NM), but the SIRIVE are computationally more efficient. In addition, the SIRIVE is nearly unbiased and the root mean square error (RMSE) performance is close to the Cramér–Rao lower bound (CRLB).</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109685"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003050","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of traditional algorithms for spherical angle-of-arrival (AOA) source localization will be significantly degraded when there are outliers in the angle measurements. By using the symmetric α-stable (SαS) distribution to describe the measurement noise containing outliers and constructing the cost function using the lp-norm, we propose a robust algorithm for spherical AOA source localization: the spherical iteratively reweighted pseudolinear estimator (SIRPLE). The SIRPLE is similar to the iteratively reweighted least squares (IRLS), with the difference that a homogeneous least squares (HLS) problem is solved in each iteration. The SIRPLE suffers from bias problems owing to the nature of the pseudolinear estimators. To overcome this problem, the instrumental variable (IV) method is introduced and the spherical iteratively reweighted instrumental variable estimator (SIRIVE) is proposed. Theoretical analysis shows that the SIRIVE is asymptotically unbiased and it can achieve the theoretical error covariance of the constrained least lp-norm estimation. Extensive simulation analyses demonstrate the better performance of the SIRIVE compared to the conventional spherical AOA source localization methods and the SIRPLE under SαS noise environment. The performance of the SIRIVE is similar to that of the Nelder–Mead algorithm (NM), but the SIRIVE are computationally more efficient. In addition, the SIRIVE is nearly unbiased and the root mean square error (RMSE) performance is close to the Cramér–Rao lower bound (CRLB).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球面到达角信号源定位的稳健算法
当角度测量值中存在异常值时,传统的球面到达角(AOA)源定位算法的性能将明显下降。通过使用对称 α 稳定(SαS)分布来描述包含异常值的测量噪声,并使用 lp 正态来构建代价函数,我们提出了一种用于球面 AOA 信号源定位的鲁棒算法:球面迭代加权伪线性估计器(SIRPLE)。SIRPLE 类似于迭代加权最小二乘法(IRLS),不同之处在于每次迭代都要解决同质最小二乘法(HLS)问题。由于伪线性估计器的性质,SIRPLE 存在偏差问题。为克服这一问题,引入了工具变量(IV)方法,并提出了球形迭代重权工具变量估计器(SIRIVE)。理论分析表明,SIRIVE 是渐近无偏的,它能达到受约束最小 lp-norm 估计的理论误差协方差。大量的仿真分析表明,在 SαS 噪声环境下,与传统的球面 AOA 信号源定位方法和 SIRPLE 相比,SIRIVE 具有更好的性能。SIRIVE 的性能与 Nelder-Mead 算法(NM)相似,但 SIRIVE 的计算效率更高。此外,SIRIVE 算法几乎无偏,均方根误差(RMSE)性能接近克拉梅尔-拉奥下限(CRLB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1