An efficient parallel self-attention transformer for CSI feedback

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Physical Communication Pub Date : 2024-08-29 DOI:10.1016/j.phycom.2024.102483
Ziang Liu, Tianyu Song, Ruohan Zhao, Jiyu Jin, Guiyue Jin
{"title":"An efficient parallel self-attention transformer for CSI feedback","authors":"Ziang Liu,&nbsp;Tianyu Song,&nbsp;Ruohan Zhao,&nbsp;Jiyu Jin,&nbsp;Guiyue Jin","doi":"10.1016/j.phycom.2024.102483","DOIUrl":null,"url":null,"abstract":"<div><p>In massive multi-input multi-output (MIMO) systems, it is necessary for user equipment (UE) to transmit downlink channel state information (CSI) back to the base station (BS). As the number of antennas increases, the feedback overhead of CSI consumes a significant amount of uplink bandwidth resources. To minimize the bandwidth overhead, we propose an efficient parallel attention transformer, called EPAformer, a lightweight network that utilizes the transformer architecture and efficient parallel self-attention (EPSA) for CSI feedback tasks. The EPSA expands the attention area of each token within the transformer block effectively by dividing multiple heads into parallel groups and conducting self-attention in horizontal and vertical stripes. The proposed EPSA achieves better feature compression and reconstruction. The simulation results display that the EPAformer surpasses previous deep learning-based approaches in terms of reconstruction performance and complexity.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"66 ","pages":"Article 102483"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In massive multi-input multi-output (MIMO) systems, it is necessary for user equipment (UE) to transmit downlink channel state information (CSI) back to the base station (BS). As the number of antennas increases, the feedback overhead of CSI consumes a significant amount of uplink bandwidth resources. To minimize the bandwidth overhead, we propose an efficient parallel attention transformer, called EPAformer, a lightweight network that utilizes the transformer architecture and efficient parallel self-attention (EPSA) for CSI feedback tasks. The EPSA expands the attention area of each token within the transformer block effectively by dividing multiple heads into parallel groups and conducting self-attention in horizontal and vertical stripes. The proposed EPSA achieves better feature compression and reconstruction. The simulation results display that the EPAformer surpasses previous deep learning-based approaches in terms of reconstruction performance and complexity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 CSI 反馈的高效并联自保持变压器
在大规模多输入多输出(MIMO)系统中,用户设备(UE)必须向基站(BS)传输下行链路信道状态信息(CSI)。随着天线数量的增加,CSI 的反馈开销会消耗大量的上行带宽资源。为了最大限度地减少带宽开销,我们提出了一种名为 EPAformer 的高效并行注意变换器,它是一种轻量级网络,利用变换器架构和高效并行自我注意(EPSA)来完成 CSI 反馈任务。EPSA 通过将多个磁头分成并行组,并在水平和垂直条纹中进行自我注意,有效地扩展了变压器块内每个令牌的注意区域。所提出的 EPSA 实现了更好的特征压缩和重构。仿真结果表明,EPAformer 在重构性能和复杂度方面超越了之前基于深度学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
期刊最新文献
Energy-efficient joint power control and channel allocation for D2D communication underlaying cellular network Editorial Board Multi-objective optimization for active IRS-aided multi-group multicast systems with energy harvesting, integrated sensing and communication A machine learning-based physical layer authentication with phase impairments BRAG: Blind region-agnostic geolocation of LTE mobile users in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1