Image fusion: A deep Y shaped–residual convolution auto-encoder with MS-SSIM loss function

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-09-06 DOI:10.1016/j.jrras.2024.101089
{"title":"Image fusion: A deep Y shaped–residual convolution auto-encoder with MS-SSIM loss function","authors":"","doi":"10.1016/j.jrras.2024.101089","DOIUrl":null,"url":null,"abstract":"<div><p>Image fusion and deep learning are actively investigating fields of research. Their application domains include machine vision, clinical imaging, remote sensing, and other areas, all of which are used to obtain comprehensive information about a specific image. Image fusion is a process that integrates multiple imaging modalities to create a single image, for the sake of providing comprehensive information. Extensive literature shows that various methodologies, requirements, and network types are utilized for diverse modality fusion. This paper addresses the previously described issue by utilizing a unique Y-shaped Residual Convolution Autoencoder Neural Network to combine images from various modalities using the same network specifications and thereby eliminating the need for manual fusion. The combined convolved features are recreated in the decoder part using a symmetric nested residual approach with the encoder. By employing MS-SSIM as the loss function, the network is capable of generating images that are perceptually and pixel-wise indistinguishable from the target images. The fusion results are compared with five other current approaches, and the Y-shaped convolutional autoencoder result demonstrates superior achievement in both quantitative and qualitative aspects.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002735/pdfft?md5=899ee8d47f5932bf61dd8889093ce5f7&pid=1-s2.0-S1687850724002735-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002735","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Image fusion and deep learning are actively investigating fields of research. Their application domains include machine vision, clinical imaging, remote sensing, and other areas, all of which are used to obtain comprehensive information about a specific image. Image fusion is a process that integrates multiple imaging modalities to create a single image, for the sake of providing comprehensive information. Extensive literature shows that various methodologies, requirements, and network types are utilized for diverse modality fusion. This paper addresses the previously described issue by utilizing a unique Y-shaped Residual Convolution Autoencoder Neural Network to combine images from various modalities using the same network specifications and thereby eliminating the need for manual fusion. The combined convolved features are recreated in the decoder part using a symmetric nested residual approach with the encoder. By employing MS-SSIM as the loss function, the network is capable of generating images that are perceptually and pixel-wise indistinguishable from the target images. The fusion results are compared with five other current approaches, and the Y-shaped convolutional autoencoder result demonstrates superior achievement in both quantitative and qualitative aspects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像融合:带有 MS-SSIM 损失函数的深度 Y 型残差卷积自动编码器
图像融合和深度学习是正在积极探索的研究领域。它们的应用领域包括机器视觉、临床成像、遥感等,都是为了获取特定图像的综合信息。图像融合是一种将多种成像模式整合在一起生成单一图像的过程,目的是提供全面的信息。大量文献表明,不同的方法、要求和网络类型被用于不同的模态融合。本文利用独特的 Y 型残差卷积自动编码器神经网络,使用相同的网络规格将来自不同模态的图像进行融合,从而消除了手动融合的需要,解决了之前描述的问题。解码器部分采用对称嵌套残差法与编码器一起重新创建合并的卷积特征。通过使用 MS-SSIM 作为损失函数,该网络能够生成在感知和像素上与目标图像无差别的图像。融合结果与其他五种现有方法进行了比较,Y 型卷积自动编码器的结果在定量和定性方面都取得了优异的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Optical and gamma-ray shielding properties of lead phosphate glasses by controlled copper oxide doping Statistical inference on the exponentiated moment exponential distribution and its discretization Cross-region feature fusion of global and local area for subtype classification prediction in cervical tumour Impact of nonlinear thermal radiation for magnetized dissipative flow of ternary hybrid nanomaterial (Al2 O3- SiO2- Fe3 O4- H2 O) Exploring the dynamic behavior of the two-phase model in radiative non-Newtonian nanofluid flow with Hall current and ion slip effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1