Effects of fluid pressure on the occurrence of multi-phase oil and accumulation of light oil and condensate from crude oil cracking: Insights from modified gold tube pyrolysis experiments
Jun Shi , Yun Li , Wenmin Jiang , Yongqiang Xiong , Hua Wang
{"title":"Effects of fluid pressure on the occurrence of multi-phase oil and accumulation of light oil and condensate from crude oil cracking: Insights from modified gold tube pyrolysis experiments","authors":"Jun Shi , Yun Li , Wenmin Jiang , Yongqiang Xiong , Hua Wang","doi":"10.1016/j.orggeochem.2024.104864","DOIUrl":null,"url":null,"abstract":"<div><p>An oil with an initial equivalent maturity of 0.74 %<em>R</em>o, was pyrolyzed in a closed gold tube pyrolysis system with added silica sand and no added water under simulated conditions spanning 0.7 %–2.1 % EasyRo. The internal fluid pressure, ranging from 0 to >150 MPa at individual maturities states of 1.0 %, 1.5 % and 2.1 % EasyRo, was controlled by increasing sample mass and setting external confining pressure (50, 100 and 150 MPa). Results indicate that the increasing fluid pressure initially promoted and then gradually retarded crude oil cracking. The free-radical reaction mechanism (hydrogen radical supply), free space of vessels, and characteristics of pressure medium control the influence of fluid pressure on the chemical reaction process. The decreasing free space of volume-constant vessels and the difference of hydrogen radicals supplied in various thermal maturity stages together gradually reduce the reaction rate of crude oil cracking. Thus, the yields of methane, wet gas, and light and heavy hydrocarbons increase at low fluid pressure ranges and then decrease at high-pressure conditions. Moreover, the physical controls of fluid phase behaviors include the evolution of fluid phase states influencing the increased rates of fluid pressure and fluid pressure influencing the production of multi-phase hydrocarbons. The increase in fluid pressure is faster in the saturated gas–liquid phase than in the unsaturated phase; thus, the phase behaviors induce the yields of product change. The increasing fluid pressure induces the occurrence of multi-phase hydrocarbons and accumulation of light oil and condensate. This study introduces a novel approach to investigate the influence of fluid pressure on reservoir oil cracking, emphasising phase behavior analysis, and shedding light on the evolution of organic matter in deep and ultra-deep strata.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"196 ","pages":"Article 104864"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001293","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
An oil with an initial equivalent maturity of 0.74 %Ro, was pyrolyzed in a closed gold tube pyrolysis system with added silica sand and no added water under simulated conditions spanning 0.7 %–2.1 % EasyRo. The internal fluid pressure, ranging from 0 to >150 MPa at individual maturities states of 1.0 %, 1.5 % and 2.1 % EasyRo, was controlled by increasing sample mass and setting external confining pressure (50, 100 and 150 MPa). Results indicate that the increasing fluid pressure initially promoted and then gradually retarded crude oil cracking. The free-radical reaction mechanism (hydrogen radical supply), free space of vessels, and characteristics of pressure medium control the influence of fluid pressure on the chemical reaction process. The decreasing free space of volume-constant vessels and the difference of hydrogen radicals supplied in various thermal maturity stages together gradually reduce the reaction rate of crude oil cracking. Thus, the yields of methane, wet gas, and light and heavy hydrocarbons increase at low fluid pressure ranges and then decrease at high-pressure conditions. Moreover, the physical controls of fluid phase behaviors include the evolution of fluid phase states influencing the increased rates of fluid pressure and fluid pressure influencing the production of multi-phase hydrocarbons. The increase in fluid pressure is faster in the saturated gas–liquid phase than in the unsaturated phase; thus, the phase behaviors induce the yields of product change. The increasing fluid pressure induces the occurrence of multi-phase hydrocarbons and accumulation of light oil and condensate. This study introduces a novel approach to investigate the influence of fluid pressure on reservoir oil cracking, emphasising phase behavior analysis, and shedding light on the evolution of organic matter in deep and ultra-deep strata.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.