VTPL: Visual and text prompt learning for visual-language models

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-09-02 DOI:10.1016/j.jvcir.2024.104280
Bo Sun , Zhichao Wu , Hao Zhang , Jun He
{"title":"VTPL: Visual and text prompt learning for visual-language models","authors":"Bo Sun ,&nbsp;Zhichao Wu ,&nbsp;Hao Zhang ,&nbsp;Jun He","doi":"10.1016/j.jvcir.2024.104280","DOIUrl":null,"url":null,"abstract":"<div><p>Visual-language (V-L) models have achieved remarkable success in learning combined visual–textual representations from large web datasets. Prompt learning, as a solution for downstream tasks, can address the forgetting of knowledge associated with fine-tuning. However, current methods focus on a single modality and fail to fully use multimodal information. This paper aims to address these limitations by proposing a novel approach called visual and text prompt learning (VTPL) to train the model and enhance both visual and text prompts. Visual prompts align visual features with text features, whereas text prompts enrich the semantic information of the text. Additionally, this paper introduces a poly-1 information noise contrastive estimation (InfoNCE) loss and a center loss to increase the interclass distance and decrease the intraclass distance. Experiments on 11 image datasets show that VTPL outperforms state-of-the-art methods, achieving 1.61%, 1.63%, 1.99%, 2.42%, and 2.87% performance boosts over CoOp for 1, 2, 4, 8, and 16 shots, respectively.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104280"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002360","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Visual-language (V-L) models have achieved remarkable success in learning combined visual–textual representations from large web datasets. Prompt learning, as a solution for downstream tasks, can address the forgetting of knowledge associated with fine-tuning. However, current methods focus on a single modality and fail to fully use multimodal information. This paper aims to address these limitations by proposing a novel approach called visual and text prompt learning (VTPL) to train the model and enhance both visual and text prompts. Visual prompts align visual features with text features, whereas text prompts enrich the semantic information of the text. Additionally, this paper introduces a poly-1 information noise contrastive estimation (InfoNCE) loss and a center loss to increase the interclass distance and decrease the intraclass distance. Experiments on 11 image datasets show that VTPL outperforms state-of-the-art methods, achieving 1.61%, 1.63%, 1.99%, 2.42%, and 2.87% performance boosts over CoOp for 1, 2, 4, 8, and 16 shots, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VTPL:视觉语言模型的视觉和文本提示学习
视觉语言(V-L)模型在从大型网络数据集中学习视觉与文本相结合的表征方面取得了显著的成功。提示学习作为下游任务的一种解决方案,可以解决与微调相关的知识遗忘问题。然而,目前的方法只关注单一模态,未能充分利用多模态信息。本文旨在通过提出一种名为视觉和文本提示学习(VTPL)的新方法来训练模型并增强视觉和文本提示,从而解决这些局限性。视觉提示使视觉特征与文本特征相一致,而文本提示则丰富了文本的语义信息。此外,本文还引入了多-1 信息噪音对比估计(InfoNCE)损失和中心损失,以增加类间距离,减少类内距离。在 11 个图像数据集上进行的实验表明,VTPL 的性能优于最先进的方法,在 1、2、4、8 和 16 个镜头上分别比 CoOp 提高了 1.61%、1.63%、1.99%、2.42% 和 2.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1