Ze-Yong Gao , Fu-Jun Niu , Yi-Bo Wang , Jing Luo , Guo-An Yin , Yun-Hu Shang , Zhan-Ju Lin
{"title":"Evaluation of the energy budget of thermokarst lake in permafrost regions of the Qinghai–Tibet Plateau","authors":"Ze-Yong Gao , Fu-Jun Niu , Yi-Bo Wang , Jing Luo , Guo-An Yin , Yun-Hu Shang , Zhan-Ju Lin","doi":"10.1016/j.accre.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Thermokarst lake formation accelerates permafrost degradation due to climate warming, thereby releasing significant amounts of carbon into the atmosphere, complicating hydrological cycles, and causing environmental damage. However, the energy transfer mechanism from the surface to the sediment of thermokarst lakes remains largely unexplored, thereby limiting our understanding of the magnitude and duration of biogeochemical processes and hydrological cycles. Therefore, herein, a typical thermokarst lake situated in the center of the Qinghai–Tibet Plateau (QTP) was selected for observation and energy budget modeling. Our results showed that the net radiation of the thermokarst lake surface was 95.1, 156.9, and 32.3 W m<sup>−2</sup> for the annual, ice-free, and ice-covered periods, respectively, and was approximately 76% of the net radiation consumed by latent heat flux. Alternations in heat storage in the thermokarst lake initially increased from January to April, then decreased from April to December, with a maximum change of 48.1 W m<sup>−2</sup> in April. The annual average heat fluxes from lake water to sediments were 1.4 W m<sup>−2</sup>; higher heat fluxes occurred during the ice-free season at a range of 4.9–12.0 W m<sup>−2</sup>. The imbalance between heat absorption and release in the millennium scale caused the underlying permafrost of the thermokarst lake to completely thaw. At present, the ground temperature beneath the lake bottom at a depth of 15 m has reached 2.0 °C. The temperatures and vapor-pressure conditions of air and lake surfaces control the energy budget of the thermokarst lake. Our findings indicate that changes in the hydrologic regime shifts and biogeochemical processes are more frequent under climate warming and permafrost degradation.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 4","pages":"Pages 636-646"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000856/pdfft?md5=cecc6b9435acaf2365c0d7d8bdf007fd&pid=1-s2.0-S1674927824000856-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824000856","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thermokarst lake formation accelerates permafrost degradation due to climate warming, thereby releasing significant amounts of carbon into the atmosphere, complicating hydrological cycles, and causing environmental damage. However, the energy transfer mechanism from the surface to the sediment of thermokarst lakes remains largely unexplored, thereby limiting our understanding of the magnitude and duration of biogeochemical processes and hydrological cycles. Therefore, herein, a typical thermokarst lake situated in the center of the Qinghai–Tibet Plateau (QTP) was selected for observation and energy budget modeling. Our results showed that the net radiation of the thermokarst lake surface was 95.1, 156.9, and 32.3 W m−2 for the annual, ice-free, and ice-covered periods, respectively, and was approximately 76% of the net radiation consumed by latent heat flux. Alternations in heat storage in the thermokarst lake initially increased from January to April, then decreased from April to December, with a maximum change of 48.1 W m−2 in April. The annual average heat fluxes from lake water to sediments were 1.4 W m−2; higher heat fluxes occurred during the ice-free season at a range of 4.9–12.0 W m−2. The imbalance between heat absorption and release in the millennium scale caused the underlying permafrost of the thermokarst lake to completely thaw. At present, the ground temperature beneath the lake bottom at a depth of 15 m has reached 2.0 °C. The temperatures and vapor-pressure conditions of air and lake surfaces control the energy budget of the thermokarst lake. Our findings indicate that changes in the hydrologic regime shifts and biogeochemical processes are more frequent under climate warming and permafrost degradation.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.