Lam Jun Guang Andy, Sameer Alam, Nimrod Lilith, Rajesh Piplani
{"title":"A deep reinforcement learning approach for Runway Configuration Management: A case study for Philadelphia International Airport","authors":"Lam Jun Guang Andy, Sameer Alam, Nimrod Lilith, Rajesh Piplani","doi":"10.1016/j.jairtraman.2024.102672","DOIUrl":null,"url":null,"abstract":"<div><p>Airports featuring multiple runways have the capability to operate in diverse runway configurations, each with its unique setup. Presently, Air Traffic Controllers (ATCOs) heavily rely on their operational experience and predefined procedures (”playbooks”) to plan the utilization of runway configurations. These ’playbooks’ however lack the capacity to comprehensively address the intricacies of a dynamic runway system under increasing weather uncertainties.</p><p>This study introduces innovative methodologies for addressing the Runway Configuration Management (RCM) problem, with the objective of selecting the optimal runway configuration to maximize the overall runway system capacity. A new approach is presented, employing Deep Reinforcement Learning (Deep RL) techniques that leverage real-world data obtained from operations at Philadelphia International Airport (PHL). This approach generates a day-long schedule of optimized runway configurations with a rolling window horizon, until the end of the day, updated every 30 min.</p><p>Additionally, a computational model is introduced to gauge the impact on capacity resulting from transitions between runway configurations which feedback into optimized runway configurations generation. The Deep RL model demonstrates reduction of number of delayed flights, amounting to approximately 30%, when applied to scenarios not encountered during the model’s training phase. Moreover, the Deep RL model effectively reduces the number of delayed arrivals by 27% and departures by 33% when compared to a baseline configuration.</p></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"120 ","pages":"Article 102672"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724001376","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Airports featuring multiple runways have the capability to operate in diverse runway configurations, each with its unique setup. Presently, Air Traffic Controllers (ATCOs) heavily rely on their operational experience and predefined procedures (”playbooks”) to plan the utilization of runway configurations. These ’playbooks’ however lack the capacity to comprehensively address the intricacies of a dynamic runway system under increasing weather uncertainties.
This study introduces innovative methodologies for addressing the Runway Configuration Management (RCM) problem, with the objective of selecting the optimal runway configuration to maximize the overall runway system capacity. A new approach is presented, employing Deep Reinforcement Learning (Deep RL) techniques that leverage real-world data obtained from operations at Philadelphia International Airport (PHL). This approach generates a day-long schedule of optimized runway configurations with a rolling window horizon, until the end of the day, updated every 30 min.
Additionally, a computational model is introduced to gauge the impact on capacity resulting from transitions between runway configurations which feedback into optimized runway configurations generation. The Deep RL model demonstrates reduction of number of delayed flights, amounting to approximately 30%, when applied to scenarios not encountered during the model’s training phase. Moreover, the Deep RL model effectively reduces the number of delayed arrivals by 27% and departures by 33% when compared to a baseline configuration.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability