{"title":"Atomic Defects Engineering Boosts Urea Synthesis toward Carbon Dioxide and Nitrate Coelectroreduction.","authors":"Zifan Xu, Zhengwu Yang, Huan Lu, Jiangchen Zhu, Junlin Li, Ming-Hui Fan, Zhi Zhao, Xiangdong Kong, Ke Wang, Zhigang Geng","doi":"10.1021/acs.nanolett.4c03451","DOIUrl":null,"url":null,"abstract":"<p><p>The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)<sub>3</sub> nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)<sub>3</sub> nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)<sub>3</sub> nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)<sub>3</sub> nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm<sup>-2</sup>. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO<sub>2</sub>NH<sub>2</sub> intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03451","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)3 nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)3 nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)3 nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)3 nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm-2. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO2NH2 intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.