A Nucleophilicity-Engineered DNA Ligation Blockade Nanoradiosensitizer Induces Irreversible DNA Damage to Overcome Cancer Radioresistance.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-09 DOI:10.1002/adma.202410031
Hongli Yang, Peihua Lin, Bo Zhang, Fangyuan Li, Daishun Ling
{"title":"A Nucleophilicity-Engineered DNA Ligation Blockade Nanoradiosensitizer Induces Irreversible DNA Damage to Overcome Cancer Radioresistance.","authors":"Hongli Yang, Peihua Lin, Bo Zhang, Fangyuan Li, Daishun Ling","doi":"10.1002/adma.202410031","DOIUrl":null,"url":null,"abstract":"<p><p>During fractionated radiotherapy, DNA damage repair intensifies in tumor cells, culminating in cancer radioresistance and subsequent radiotherapy failure. Despite the recent development of nanoradiosensitizers targeting specific DNA damage repair pathways, the persistence of repair mechanisms involving multiple pathways remains inevitable. To address this challenge, a nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer (DLBN) comprising Au/CeO<sub>2</sub> heteronanostructure modified with trans-acting activator of transcription peptides is reported, which targets and inhibits the DNA ligation inside cancer cell nuclei via heterointerface-mediated dephosphorylation of DNA, a crucial step in overcoming cancer radioresistance. First, the Schottky-type heteronanostructure of cancer cell nucleus-targeting DLBN effectively intensifies radiation-induced DNA damage via catalase-mimetic activity and radiation-triggered catalytic reactions. Notably, by leveraging Au/CeO<sub>2</sub> heterointerface, DLBN spontaneously dissociates H<sub>2</sub>O to hydroxide, a nucleophile with higher nucleophilicity, thereby exhibiting remarkable dephosphorylation capability at DNA nicks through facilitated nucleophilic attack. This enables the blockade of DNA ligation, a pivotal step in all DNA damage repair pathways, effectively interrupting the repair process. Consequently, DLBN resensitizes radioresistant cells by overcoming therapy-induced radioresistance, leading to a substantial accumulation of unrepaired DNA damage. These findings offer insight into the dephosphorylation of DNA within nuclei, and underscore the potential of heteronanostructure-based nanoradiosensitizer to block DNA ligation against therapy-induced radioresistance.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During fractionated radiotherapy, DNA damage repair intensifies in tumor cells, culminating in cancer radioresistance and subsequent radiotherapy failure. Despite the recent development of nanoradiosensitizers targeting specific DNA damage repair pathways, the persistence of repair mechanisms involving multiple pathways remains inevitable. To address this challenge, a nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer (DLBN) comprising Au/CeO2 heteronanostructure modified with trans-acting activator of transcription peptides is reported, which targets and inhibits the DNA ligation inside cancer cell nuclei via heterointerface-mediated dephosphorylation of DNA, a crucial step in overcoming cancer radioresistance. First, the Schottky-type heteronanostructure of cancer cell nucleus-targeting DLBN effectively intensifies radiation-induced DNA damage via catalase-mimetic activity and radiation-triggered catalytic reactions. Notably, by leveraging Au/CeO2 heterointerface, DLBN spontaneously dissociates H2O to hydroxide, a nucleophile with higher nucleophilicity, thereby exhibiting remarkable dephosphorylation capability at DNA nicks through facilitated nucleophilic attack. This enables the blockade of DNA ligation, a pivotal step in all DNA damage repair pathways, effectively interrupting the repair process. Consequently, DLBN resensitizes radioresistant cells by overcoming therapy-induced radioresistance, leading to a substantial accumulation of unrepaired DNA damage. These findings offer insight into the dephosphorylation of DNA within nuclei, and underscore the potential of heteronanostructure-based nanoradiosensitizer to block DNA ligation against therapy-induced radioresistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亲核工程DNA连接阻断纳米放射增敏剂诱导不可逆DNA损伤,克服癌症放射抗性
在分次放疗过程中,肿瘤细胞的 DNA 损伤修复会加剧,最终导致癌症放射抗性和放疗失败。尽管最近开发出了针对特定 DNA 损伤修复途径的纳米放射增敏剂,但涉及多种途径的修复机制的持续存在仍然不可避免。为了应对这一挑战,本研究报道了一种亲核性工程DNA连接阻断纳米放射增敏剂(DLBN),它由Au/CeO2异质结构和反式转录激活肽修饰而成,通过异质界面介导的DNA去磷酸化作用靶向并抑制癌细胞核内的DNA连接,这是克服癌症放射抗性的关键步骤。首先,癌细胞核靶向 DLBN 的肖特基型异质结构通过催化酶模拟活性和辐射触发的催化反应,有效地加剧了辐射诱导的 DNA 损伤。值得注意的是,通过利用金/CeO2 异质界面,DLBN 可自发地将 H2O 分解为氢氧化物(一种亲核性更高的亲核体),从而通过促进亲核攻击在 DNA 缺口处表现出显著的去磷酸化能力。这使得 DNA 连接(所有 DNA 损伤修复途径中的关键步骤)被阻断,从而有效地中断了修复过程。因此,DLBN 通过克服治疗引起的放射抗性,使放射抗性细胞重新敏感,从而导致大量未修复 DNA 损伤的积累。这些发现深入揭示了 DNA 在细胞核内的去磷酸化过程,并强调了基于异质结构的纳米放射增敏剂阻断 DNA 连接以对抗治疗诱导的放射抗性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cu-Atom Locations in Rocksalt SnTe Thermoelectric Alloy. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. Intertwined Flexoelectricity and Stacking Ferroelectricity in Marginally Twisted hBN Moiré Superlattice. Picometer-Level In Situ Manipulation of Ferroelectric Polarization in Van der Waals layered InSe. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1