Chao Li, Xianhua Wang, Hanhan Ye, Shichao Wu, Hailiang Shi, Yuan An, Erchang Sun
{"title":"Assessment of thermal power plant CO<sub>2</sub> emissions quantification performance and uncertainty of measurements by ground-based remote sensing.","authors":"Chao Li, Xianhua Wang, Hanhan Ye, Shichao Wu, Hailiang Shi, Yuan An, Erchang Sun","doi":"10.1016/j.envpol.2024.124886","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal power plants serve as significant CO<sub>2</sub> sources, and accurate monitoring of their emissions is crucial for improving the precision of global carbon emission estimates. In this study, a measurement method based on measuring point source plumes was employed in ground-based remote sensing experiments at the thermal power plant. By simulating CO<sub>2</sub> plumes, we analyzed the impact of surrounding urban structures, the geometric relationship between measurement points and plumes, and the influence on measurement points selection. We also assessed the capability and uncertainties in quantifying CO<sub>2</sub> emissions. For the Hefei power plant, CO<sub>2</sub> emission estimates were on average 7.98 ± 10.01 kg/s higher with surface buildings compared to scenarios without buildings (approximately 4.09% error). By selectively filtering discrete data, the emission estimation errors were significantly reduced by 7.31 ± 7.13 kg/s compared to pre-filtered data. Regarding the relationship between observation paths and plume geometry, simulation studies indicated that the ability to estimate CO<sub>2</sub> emissions varied for near and middle segment observations. The lowest emission rate error was found in the mid-segment near 1.5-2.0 km, reaching 7.13 ± 5.39 kg/s. CO<sub>2</sub> distribution at the mid-segment position becomes more uniform relative to the near segment, making it more suitable for meeting emission estimation requirements. Optimizing measurement schemes by considering environmental factors and precisely selecting measurement points significantly enhances emission estimation accuracy, providing crucial technical support for top-down estimates of anthropogenic CO<sub>2</sub> emissions.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124886"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124886","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal power plants serve as significant CO2 sources, and accurate monitoring of their emissions is crucial for improving the precision of global carbon emission estimates. In this study, a measurement method based on measuring point source plumes was employed in ground-based remote sensing experiments at the thermal power plant. By simulating CO2 plumes, we analyzed the impact of surrounding urban structures, the geometric relationship between measurement points and plumes, and the influence on measurement points selection. We also assessed the capability and uncertainties in quantifying CO2 emissions. For the Hefei power plant, CO2 emission estimates were on average 7.98 ± 10.01 kg/s higher with surface buildings compared to scenarios without buildings (approximately 4.09% error). By selectively filtering discrete data, the emission estimation errors were significantly reduced by 7.31 ± 7.13 kg/s compared to pre-filtered data. Regarding the relationship between observation paths and plume geometry, simulation studies indicated that the ability to estimate CO2 emissions varied for near and middle segment observations. The lowest emission rate error was found in the mid-segment near 1.5-2.0 km, reaching 7.13 ± 5.39 kg/s. CO2 distribution at the mid-segment position becomes more uniform relative to the near segment, making it more suitable for meeting emission estimation requirements. Optimizing measurement schemes by considering environmental factors and precisely selecting measurement points significantly enhances emission estimation accuracy, providing crucial technical support for top-down estimates of anthropogenic CO2 emissions.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.