An AI-based imaging flow cytometry approach to study erythrophagocytosis

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Cytometry Part A Pub Date : 2024-09-09 DOI:10.1002/cyto.a.24894
S. Neri, E. T. Brandsma, F. P. J. Mul, T. W. Kuijpers, H. L. Matlung, R. van Bruggen
{"title":"An AI-based imaging flow cytometry approach to study erythrophagocytosis","authors":"S. Neri,&nbsp;E. T. Brandsma,&nbsp;F. P. J. Mul,&nbsp;T. W. Kuijpers,&nbsp;H. L. Matlung,&nbsp;R. van Bruggen","doi":"10.1002/cyto.a.24894","DOIUrl":null,"url":null,"abstract":"<p>Erythrophagocytosis is a process consisting of recognition, engulfment and digestion by phagocytes of antibody-coated or damaged erythrocytes. Understanding the dynamics that are behind erythrophagocytosis is fundamental to comprehend this cellular process under specific circumstances. Several techniques have been used to study phagocytosis. Among these, an interesting approach is the use of Imaging Flow Cytometry (IFC) to distinguish internalization and binding of cells or particles. However, this method requires laborious analysis. Here, we introduce a novel approach to analyze the phagocytosis process by combining Artificial Intelligence (AI) with IFC. Our study demonstrates that this approach is highly suitable to study erythrophagocytosis, categorizing internalized, bound and non-bound erythrocytes. Validation experiments showed that our pipeline performs with high accuracy and reproducibility.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 10","pages":"763-771"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24894","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Erythrophagocytosis is a process consisting of recognition, engulfment and digestion by phagocytes of antibody-coated or damaged erythrocytes. Understanding the dynamics that are behind erythrophagocytosis is fundamental to comprehend this cellular process under specific circumstances. Several techniques have been used to study phagocytosis. Among these, an interesting approach is the use of Imaging Flow Cytometry (IFC) to distinguish internalization and binding of cells or particles. However, this method requires laborious analysis. Here, we introduce a novel approach to analyze the phagocytosis process by combining Artificial Intelligence (AI) with IFC. Our study demonstrates that this approach is highly suitable to study erythrophagocytosis, categorizing internalized, bound and non-bound erythrocytes. Validation experiments showed that our pipeline performs with high accuracy and reproducibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的成像流式细胞术研究红细胞吞噬功能。
红细胞吞噬是吞噬细胞识别、吞噬和消化抗体包裹或受损红细胞的过程。了解红细胞吞噬背后的动态变化是理解特定情况下这一细胞过程的基础。有几种技术被用来研究吞噬作用。其中,一种有趣的方法是使用成像流式细胞仪(IFC)来区分细胞或颗粒的内化和结合。然而,这种方法需要进行费力的分析。在这里,我们介绍了一种结合人工智能(AI)和 IFC 来分析吞噬过程的新方法。我们的研究表明,这种方法非常适合研究红细胞吞噬,可对内吞、结合和非结合红细胞进行分类。验证实验表明,我们的方法具有很高的准确性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
期刊最新文献
Issue Information - TOC Volume 105A, Number 12, December 2024 Cover Image Autofluorescence lifetime flow cytometry rapidly flows from strength to strength. Flow cytometry-based method to detect and separate Mycoplasma hyorhinis in cell cultures. The consequence of mismatched buffers in purity checks when spectral cell sorting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1