Electrolytes in conducting nanopores: Revisiting constant charge and constant potential simulations.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-09-14 DOI:10.1063/5.0226959
Alexander Reinauer, Svyatoslav Kondrat, Christian Holm
{"title":"Electrolytes in conducting nanopores: Revisiting constant charge and constant potential simulations.","authors":"Alexander Reinauer, Svyatoslav Kondrat, Christian Holm","doi":"10.1063/5.0226959","DOIUrl":null,"url":null,"abstract":"<p><p>Simulating electrolyte-electrode systems poses challenges due to the need to account for the electrode's response to ion movements in order to maintain a constant electrode potential, which slows down the simulations. To circumvent this, computationally more efficient constant charge (CC) simulations are sometimes employed. However, the accuracy of CC simulations in capturing the behavior of electrolyte-electrode systems remains unclear, especially for microporous electrodes. Herein, we consider electrolyte-filled slit nanopores and systematically analyze the in-pore ion structure and diffusivity using CC and constant potential simulations. Our results indicate that CC simulations provide comparable pore occupancies at high bulk ion densities and for highly charged pores, but they fail to accurately describe the ion structure and dynamics, particularly in quasi-2D (single-layer) pores and at low ion densities. We attribute these results to the superionic state emerging in conducting nanoconfinement and its interplay with excluded volume interactions.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226959","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating electrolyte-electrode systems poses challenges due to the need to account for the electrode's response to ion movements in order to maintain a constant electrode potential, which slows down the simulations. To circumvent this, computationally more efficient constant charge (CC) simulations are sometimes employed. However, the accuracy of CC simulations in capturing the behavior of electrolyte-electrode systems remains unclear, especially for microporous electrodes. Herein, we consider electrolyte-filled slit nanopores and systematically analyze the in-pore ion structure and diffusivity using CC and constant potential simulations. Our results indicate that CC simulations provide comparable pore occupancies at high bulk ion densities and for highly charged pores, but they fail to accurately describe the ion structure and dynamics, particularly in quasi-2D (single-layer) pores and at low ion densities. We attribute these results to the superionic state emerging in conducting nanoconfinement and its interplay with excluded volume interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导电纳米孔中的电解质:重温恒电荷和恒电位模拟。
模拟电解质-电极系统是一项挑战,因为需要考虑电极对离子运动的反应,以保持恒定的电极电位,这就减慢了模拟速度。为了避免这种情况,有时会采用计算效率更高的恒电荷(CC)模拟。然而,CC 模拟在捕捉电解质电极系统行为方面的准确性仍不明确,尤其是对于微孔电极。在此,我们考虑了充满电解质的狭缝纳米孔,并使用 CC 和恒电位模拟系统分析了孔内离子结构和扩散性。我们的研究结果表明,CC 模拟可提供高体离子密度和高电荷孔隙的可比孔隙占有率,但无法准确描述离子结构和动力学,尤其是在准二维(单层)孔隙和低离子密度时。我们将这些结果归因于传导纳米孔隙中出现的超离子状态及其与排除体积相互作用的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A classical density functional theory for solvation across length scales. Accelerated convergence via adiabatic sampling for adsorption and desorption processes. Benchmarking the exponential ansatz for the Holstein model. Colloid thermophoresis in surfactant solutions: Probing colloid-solvent interactions through microscale experiments. Electrolytes in conducting nanopores: Revisiting constant charge and constant potential simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1