Giulia Janzen, Juan Pablo Miranda, J Martín-Roca, Paolo Malgaretti, Emanuele Locatelli, Chantal Valeriani, D A Matoz Fernandez
In this work, we compare the structural and dynamic behavior of active filaments in two dimensions using tangential and push-pull models, including a variant with passive end monomers, to bridge the two frameworks. These models serve as valuable frameworks for understanding self-organization in biological polymers and synthetic materials. At low activity, all models exhibit similar behavior; as activity increases, subtle differences emerge in intermediate regimes, but at high activity, their behaviors converge. Adjusting for differences in mean active force reveals nearly identical behavior across models, even across varying filament configurations and bending rigidities. Our results highlight the importance of force definitions in active polymer simulations and provide insights into phase transitions across varying filament configurations.
{"title":"Active polymer behavior in two dimensions: A comparative analysis of tangential and push-pull models.","authors":"Giulia Janzen, Juan Pablo Miranda, J Martín-Roca, Paolo Malgaretti, Emanuele Locatelli, Chantal Valeriani, D A Matoz Fernandez","doi":"10.1063/5.0243432","DOIUrl":"https://doi.org/10.1063/5.0243432","url":null,"abstract":"<p><p>In this work, we compare the structural and dynamic behavior of active filaments in two dimensions using tangential and push-pull models, including a variant with passive end monomers, to bridge the two frameworks. These models serve as valuable frameworks for understanding self-organization in biological polymers and synthetic materials. At low activity, all models exhibit similar behavior; as activity increases, subtle differences emerge in intermediate regimes, but at high activity, their behaviors converge. Adjusting for differences in mean active force reveals nearly identical behavior across models, even across varying filament configurations and bending rigidities. Our results highlight the importance of force definitions in active polymer simulations and provide insights into phase transitions across varying filament configurations.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of nonplanarity on the electronic properties of π-systems has been difficult to study systematically because of the limited availability of suitable model compounds. Our group recently synthesized a series of end-to-end bent perylene bisimide (PBI) cyclophanes, whose degree of bending is adjustable by modifying the internal alkyl tethers. Herein, we subjected these bent PBI derivatives to theoretical calculations and time-resolved spectroscopy. The current study has offered rational explanations for several unique photophysical characteristics of bent PBIs: (1) the redshifts of the S0-S1 transitions, (2) the decrease in extinction coefficients, (3) the broadening of spectral shapes, and (4) the suppression of nonradiative decay processes. Furthermore, the investigation of the S1 states and radical anions has revealed that structural bending also substantially alters the energy levels of upper molecular orbitals such as LUMO+2.
{"title":"Effect of structural bending on the photophysical properties of perylene bisimide.","authors":"Hikaru Sotome, Masahiro Higashi, Yuki Tanaka, Hiroshi Shinokubo, Yasuhiro Kobori, Norihito Fukui","doi":"10.1063/5.0255756","DOIUrl":"https://doi.org/10.1063/5.0255756","url":null,"abstract":"<p><p>The effect of nonplanarity on the electronic properties of π-systems has been difficult to study systematically because of the limited availability of suitable model compounds. Our group recently synthesized a series of end-to-end bent perylene bisimide (PBI) cyclophanes, whose degree of bending is adjustable by modifying the internal alkyl tethers. Herein, we subjected these bent PBI derivatives to theoretical calculations and time-resolved spectroscopy. The current study has offered rational explanations for several unique photophysical characteristics of bent PBIs: (1) the redshifts of the S0-S1 transitions, (2) the decrease in extinction coefficients, (3) the broadening of spectral shapes, and (4) the suppression of nonradiative decay processes. Furthermore, the investigation of the S1 states and radical anions has revealed that structural bending also substantially alters the energy levels of upper molecular orbitals such as LUMO+2.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum computing is finding increasingly more applications in quantum chemistry, particularly to simulate electronic structure and molecular properties of simple systems. The transformation of a molecular Hamiltonian from the fermionic space to the qubit space results in a series of Pauli strings. Calculating the energy then involves evaluating the expectation values of each of these strings, which presents a significant bottleneck for applying variational quantum eigensolvers (VQEs) in quantum chemistry. Unlike fermionic Hamiltonians, the terms in a qubit Hamiltonian are additive. This work leverages this property to introduce a novel method for extracting information from the partial qubit Hamiltonian, thereby enhancing the efficiency of VQEs. This work introduces the SHARC-VQE (Simplified Hamiltonian Approximation, Refinement, and Correction-VQE) method, where the full molecular Hamiltonian is partitioned into two parts based on the ease of quantum execution. The easy-to-execute part constitutes the partial Hamiltonian, and the remaining part, while more complex to execute, is generally less significant. The latter is approximated by a refined operator and added up as a correction into the partial Hamiltonian. SHARC-VQE significantly reduces computational costs for molecular simulations. The cost of a single energy measurement can be reduced from O(N4ϵ2) to O(1ϵ2) for a system of N qubits and accuracy ϵ, while the overall cost of VQE can be reduced from O(N7ϵ2) to O(N3ϵ2). Furthermore, measurement outcomes using SHARC-VQE are less prone to errors induced by noise from quantum circuits, reducing the errors from 20%-40% to 5%-10% without any additional error correction or mitigation technique. In addition, the SHARC-VQE is demonstrated as an initialization technique, where the simplified partial Hamiltonian is used to identify an optimal starting point for a complex problem. Overall, this method improves the efficiency of VQEs and enhances the accuracy and reliability of quantum simulations by mitigating noise and overcoming computational challenges.
{"title":"SHARC-VQE: Simplified Hamiltonian approach with refinement and correction enabled variational quantum eigensolver for molecular simulation.","authors":"Harshdeep Singh, Sonjoy Majumder, Sabyashachi Mishra","doi":"10.1063/5.0249447","DOIUrl":"https://doi.org/10.1063/5.0249447","url":null,"abstract":"<p><p>Quantum computing is finding increasingly more applications in quantum chemistry, particularly to simulate electronic structure and molecular properties of simple systems. The transformation of a molecular Hamiltonian from the fermionic space to the qubit space results in a series of Pauli strings. Calculating the energy then involves evaluating the expectation values of each of these strings, which presents a significant bottleneck for applying variational quantum eigensolvers (VQEs) in quantum chemistry. Unlike fermionic Hamiltonians, the terms in a qubit Hamiltonian are additive. This work leverages this property to introduce a novel method for extracting information from the partial qubit Hamiltonian, thereby enhancing the efficiency of VQEs. This work introduces the SHARC-VQE (Simplified Hamiltonian Approximation, Refinement, and Correction-VQE) method, where the full molecular Hamiltonian is partitioned into two parts based on the ease of quantum execution. The easy-to-execute part constitutes the partial Hamiltonian, and the remaining part, while more complex to execute, is generally less significant. The latter is approximated by a refined operator and added up as a correction into the partial Hamiltonian. SHARC-VQE significantly reduces computational costs for molecular simulations. The cost of a single energy measurement can be reduced from O(N4ϵ2) to O(1ϵ2) for a system of N qubits and accuracy ϵ, while the overall cost of VQE can be reduced from O(N7ϵ2) to O(N3ϵ2). Furthermore, measurement outcomes using SHARC-VQE are less prone to errors induced by noise from quantum circuits, reducing the errors from 20%-40% to 5%-10% without any additional error correction or mitigation technique. In addition, the SHARC-VQE is demonstrated as an initialization technique, where the simplified partial Hamiltonian is used to identify an optimal starting point for a complex problem. Overall, this method improves the efficiency of VQEs and enhances the accuracy and reliability of quantum simulations by mitigating noise and overcoming computational challenges.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qizhen Hong, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun, Cecilia Coletti
Complete datasets of rate coefficients for the vibrational quenching of molecular nitrogen by collision with electronically excited atomic oxygen O(1D) over a wide temperature range are calculated for the first time. Such data are important ingredients in the modeling of non-local thermal equilibrium conditions that characterize the atmosphere, media of astronomical interest, and cold and hot plasmas, where O(1D), also formed when O2 molecules break, represents a significant fraction of the gas mixture. To this end, we developed analytical potential energy surfaces (PESs) for the 1Π and 1Δ electronic states of the N2-O(1D) system to accurately describe the interaction in the long, medium, and first repulsive range of intermolecular distances, the most effective regions in inelastic collisions under a variety of conditions of interest. The derived PESs are used to calculate the vibration-to-translation (V-T) and vibration-to-electronic (V-E) energy transfer rates by mixed quantum-classical dynamics and by the Landau-Zener formulation, respectively. In addition, the datasets are extended to cover the entire N2 vibrational ladder by using the Gaussian process regression. The results show that at low temperatures, where V-E relaxation dominates, N2 vibrational quenching by O(1D) collisions is faster than by O(3P) collisions.
{"title":"The many faces of vibrational energy relaxation in N2(v) + O(1D) collisions: Dynamics on 1Π and 1Δ potential energy surfaces.","authors":"Qizhen Hong, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun, Cecilia Coletti","doi":"10.1063/5.0255380","DOIUrl":"https://doi.org/10.1063/5.0255380","url":null,"abstract":"<p><p>Complete datasets of rate coefficients for the vibrational quenching of molecular nitrogen by collision with electronically excited atomic oxygen O(1D) over a wide temperature range are calculated for the first time. Such data are important ingredients in the modeling of non-local thermal equilibrium conditions that characterize the atmosphere, media of astronomical interest, and cold and hot plasmas, where O(1D), also formed when O2 molecules break, represents a significant fraction of the gas mixture. To this end, we developed analytical potential energy surfaces (PESs) for the 1Π and 1Δ electronic states of the N2-O(1D) system to accurately describe the interaction in the long, medium, and first repulsive range of intermolecular distances, the most effective regions in inelastic collisions under a variety of conditions of interest. The derived PESs are used to calculate the vibration-to-translation (V-T) and vibration-to-electronic (V-E) energy transfer rates by mixed quantum-classical dynamics and by the Landau-Zener formulation, respectively. In addition, the datasets are extended to cover the entire N2 vibrational ladder by using the Gaussian process regression. The results show that at low temperatures, where V-E relaxation dominates, N2 vibrational quenching by O(1D) collisions is faster than by O(3P) collisions.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the state space structure of complex quantum systems can help to effectively characterize the system properties and explore underlying mechanisms. The structure of the state space could be quite complicated for quantum many-body systems, and the systematic decomposition of the state space is normally involved. Recently, a modular tensor diagram approach was proposed to reorganize the state space hierarchically based on a modular basis. Here, we review the construction of spin eigenfunctions for multiple exciton systems and further develop modular tensor diagrams to exemplify the hierarchical symmetry of the state space. The newly constructed spin eigenfunctions for quadruple excitons, along with the results for triple excitons, are used to demonstrate the effective decomposition of the state space into hierarchical tensorial structures. A universal recursive relation is derived to determine the coefficients of spin eigenfunctions exhibiting transformation symmetry between different classes of elementary modules for an arbitrary number of exciton units. Interestingly, different coupling schemes mapped to quantum many-body interactions lead to different spin adapted basis states, which may correspond to different realistic systems upon the breakdown of spin degeneracy. This work highlights the hierarchical symmetry of the tensorial structure of quantum many-body systems, which may facilitate a better understanding of the structure property relationship toward the object-oriented materials design.
{"title":"The structure and symmetry of modular state space for complex quantum systems.","authors":"Guohua Tao","doi":"10.1063/5.0245447","DOIUrl":"https://doi.org/10.1063/5.0245447","url":null,"abstract":"<p><p>Understanding the state space structure of complex quantum systems can help to effectively characterize the system properties and explore underlying mechanisms. The structure of the state space could be quite complicated for quantum many-body systems, and the systematic decomposition of the state space is normally involved. Recently, a modular tensor diagram approach was proposed to reorganize the state space hierarchically based on a modular basis. Here, we review the construction of spin eigenfunctions for multiple exciton systems and further develop modular tensor diagrams to exemplify the hierarchical symmetry of the state space. The newly constructed spin eigenfunctions for quadruple excitons, along with the results for triple excitons, are used to demonstrate the effective decomposition of the state space into hierarchical tensorial structures. A universal recursive relation is derived to determine the coefficients of spin eigenfunctions exhibiting transformation symmetry between different classes of elementary modules for an arbitrary number of exciton units. Interestingly, different coupling schemes mapped to quantum many-body interactions lead to different spin adapted basis states, which may correspond to different realistic systems upon the breakdown of spin degeneracy. This work highlights the hierarchical symmetry of the tensorial structure of quantum many-body systems, which may facilitate a better understanding of the structure property relationship toward the object-oriented materials design.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to break the reciprocity between absorbance and emittance provides new ideas to develop advanced light harvesting devices and thermal management. However, the existing designs with magnetic optical (MO) materials typically require a magnetic excitation on the order of 1 T, which imposes a constraint on their practical application. Here, a photonic structure with a dielectric-MO material planar sandwiched between a dielectric resonator array and a metallic reflector is designed and studied. The results show that near-perfect nonreciprocity can be obtained with an extremely small magnetic excitation on the order of 0.2 T, which could be reached with permanent magnets. Moreover, the physical origin of such a phenomenon and the dependence of the thermal emission performances on the structural dimensions are also studied. The concepts and the results obtained here will pave the way for the development of nonreciprocal radiation devices with modest magnetic fields, which can be achieved in practice.
{"title":"Mid-infrared strong nonreciprocal thermal radiation with extremely small applied magnetic field.","authors":"Jun Wu, Ye Ming Qing","doi":"10.1063/5.0262471","DOIUrl":"https://doi.org/10.1063/5.0262471","url":null,"abstract":"<p><p>The ability to break the reciprocity between absorbance and emittance provides new ideas to develop advanced light harvesting devices and thermal management. However, the existing designs with magnetic optical (MO) materials typically require a magnetic excitation on the order of 1 T, which imposes a constraint on their practical application. Here, a photonic structure with a dielectric-MO material planar sandwiched between a dielectric resonator array and a metallic reflector is designed and studied. The results show that near-perfect nonreciprocity can be obtained with an extremely small magnetic excitation on the order of 0.2 T, which could be reached with permanent magnets. Moreover, the physical origin of such a phenomenon and the dependence of the thermal emission performances on the structural dimensions are also studied. The concepts and the results obtained here will pave the way for the development of nonreciprocal radiation devices with modest magnetic fields, which can be achieved in practice.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents a new approach for simulating the interaction between molecular aggregate systems and multi-modal energy-time entangled light by solving the Lindblad master equation. The density matrix that describes both molecular and photonic states is propagated on a time grid, with excited-state dephasing included via the Lindblad superoperator. Molecular exciton entanglement, induced by entangled photons, is analyzed from the time-evolved density matrix. The calculations are based on a model of a molecular dimer introduced by Bittner et al. [J. Chem. Phys. 152, 071101 (2020)], along with entangled light that is approximated by a finite number of modes. Our results demonstrate that photonic entanglement plays a significant role in influencing molecular exciton entanglement, highlighting the interplay between the photonic and excitonic subsystems in such interactions.
{"title":"Modeling entanglement dynamics of molecules interacting with entangled photons through Lindblad master equation approach.","authors":"Sajal Kumar Giri, George C Schatz","doi":"10.1063/5.0254272","DOIUrl":"https://doi.org/10.1063/5.0254272","url":null,"abstract":"<p><p>This work presents a new approach for simulating the interaction between molecular aggregate systems and multi-modal energy-time entangled light by solving the Lindblad master equation. The density matrix that describes both molecular and photonic states is propagated on a time grid, with excited-state dephasing included via the Lindblad superoperator. Molecular exciton entanglement, induced by entangled photons, is analyzed from the time-evolved density matrix. The calculations are based on a model of a molecular dimer introduced by Bittner et al. [J. Chem. Phys. 152, 071101 (2020)], along with entangled light that is approximated by a finite number of modes. Our results demonstrate that photonic entanglement plays a significant role in influencing molecular exciton entanglement, highlighting the interplay between the photonic and excitonic subsystems in such interactions.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riccardo Morbidini, Robert M Edkins, Kirill Nemkovskiy, Gøran Nilsen, Tilo Seydel, Katharina Edkins
Understanding structural dynamics on the picosecond/nanometer scale in complex fluids is crucial for advancing various fields, from material chemistry to drug delivery. We employ polarized quasi-elastic neutron spectroscopy to investigate the perturbation to the hydrogen bond network of water-ethanol mixtures induced by a supramolecular gel network and by paracetamol (PCM) molecules. Interestingly, while the supramolecular gelator significantly alters the macroscopic behavior of the solvent at concentrations of 0.3 and 0.5 wt. %, it does not affect the hydrogen bond network at the microscopic level. In contrast, the addition of PCM at 5 wt. %, which does not change the macroscopic properties, modifies the structural dynamics of water-ethanol mixtures at length scales commensurate with and below the PCM-PCM correlation length in the mixture. This study reveals the intricate interplay between solute, solvent, and gel interactions, demonstrating a lack of direct correlation between macroscopic and microscopic properties in such complex systems.
{"title":"Perturbation of water-ethanol solvent structural relaxation by a bis-urea supramolecular gel and paracetamol.","authors":"Riccardo Morbidini, Robert M Edkins, Kirill Nemkovskiy, Gøran Nilsen, Tilo Seydel, Katharina Edkins","doi":"10.1063/5.0252501","DOIUrl":"https://doi.org/10.1063/5.0252501","url":null,"abstract":"<p><p>Understanding structural dynamics on the picosecond/nanometer scale in complex fluids is crucial for advancing various fields, from material chemistry to drug delivery. We employ polarized quasi-elastic neutron spectroscopy to investigate the perturbation to the hydrogen bond network of water-ethanol mixtures induced by a supramolecular gel network and by paracetamol (PCM) molecules. Interestingly, while the supramolecular gelator significantly alters the macroscopic behavior of the solvent at concentrations of 0.3 and 0.5 wt. %, it does not affect the hydrogen bond network at the microscopic level. In contrast, the addition of PCM at 5 wt. %, which does not change the macroscopic properties, modifies the structural dynamics of water-ethanol mixtures at length scales commensurate with and below the PCM-PCM correlation length in the mixture. This study reveals the intricate interplay between solute, solvent, and gel interactions, demonstrating a lack of direct correlation between macroscopic and microscopic properties in such complex systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The lack of a well-defined equilibrium reference configuration has long hindered a comprehensive atomic-level understanding of liquid dynamics and properties. The Instantaneous Normal Mode (INM) approach, which involves diagonalizing the Hessian matrix of potential energy in instantaneous liquid configurations, has emerged as a promising framework in this direction. However, several conceptual challenges remain, particularly related to the approach's inability to capture anharmonic effects. In this study, we present a set of "experimental facts" through a comprehensive INM analysis of simulated systems, including Ar, Xe, N2, CS2, Ga, and Pb, across a wide temperature range from the solid to gas phase. First, we examine the INM density of states (DOS) and compare it to the DOS obtained from the velocity auto-correlation function. We then analyze the temperature dependence of the fraction of unstable modes and the low-frequency slope of the INM DOS in search of potential universal behaviors. Furthermore, we explore the relationship between INMs and other properties of liquids, including the liquid-like to gas-like dynamical crossover and the momentum gap of collective shear waves. In addition, we investigate the INM spectrum at low temperatures as the system approaches the solid phase, revealing a significant fraction of unstable modes even in crystalline solids. Finally, we confirm the existence of a recently discussed cusp-like singularity in the INM eigenvalue spectrum and uncover its complex temperature-dependent behavior, challenging current theoretical models.
{"title":"Revisiting the question of what instantaneous normal modes tell us about liquid dynamics.","authors":"Sha Jin, Xue Fan, Matteo Baggioli","doi":"10.1063/5.0239061","DOIUrl":"https://doi.org/10.1063/5.0239061","url":null,"abstract":"<p><p>The lack of a well-defined equilibrium reference configuration has long hindered a comprehensive atomic-level understanding of liquid dynamics and properties. The Instantaneous Normal Mode (INM) approach, which involves diagonalizing the Hessian matrix of potential energy in instantaneous liquid configurations, has emerged as a promising framework in this direction. However, several conceptual challenges remain, particularly related to the approach's inability to capture anharmonic effects. In this study, we present a set of \"experimental facts\" through a comprehensive INM analysis of simulated systems, including Ar, Xe, N2, CS2, Ga, and Pb, across a wide temperature range from the solid to gas phase. First, we examine the INM density of states (DOS) and compare it to the DOS obtained from the velocity auto-correlation function. We then analyze the temperature dependence of the fraction of unstable modes and the low-frequency slope of the INM DOS in search of potential universal behaviors. Furthermore, we explore the relationship between INMs and other properties of liquids, including the liquid-like to gas-like dynamical crossover and the momentum gap of collective shear waves. In addition, we investigate the INM spectrum at low temperatures as the system approaches the solid phase, revealing a significant fraction of unstable modes even in crystalline solids. Finally, we confirm the existence of a recently discussed cusp-like singularity in the INM eigenvalue spectrum and uncover its complex temperature-dependent behavior, challenging current theoretical models.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hallmann Ó Gestsson, Charlie Nation, Jacob S Higgins, Gregory S Engel, Alexandra Olaya-Castro
Two-dimensional optical spectroscopy experiments have examined photoprotective mechanisms in the Fenna-Matthews-Olson (FMO) photosynthetic complex, showing that exciton transfer pathways change significantly depending on the environmental redox conditions. Higgins et al. [Proc. Natl. Acad. Sci. U. S. A. 118(11), e2018240118 (2021)] have theoretically linked these observations to changes in a quantum vibronic coupling, whereby onsite energies are altered under oxidizing conditions such that exciton energy gaps are detuned from a specific vibrational motion of the bacteriochlorophyll a. These arguments rely on an analysis of exciton transfer rates within Redfield theory, which is known to provide an inaccurate description of the influence of the vibrational environment on the exciton dynamics in the FMO complex. Here, we use a memory kernel formulation of the hierarchical equations of motion to obtain non-perturbative estimations of exciton transfer rates, which yield a modified physical picture. Our findings indicate that onsite energy shifts alone do not reproduce the reported rate changes in the oxidative environment. We systematically examine a model that includes combined changes in both site energies and the frequency of a local vibration in the oxidized complex while maintaining consistency with absorption spectra and achieving qualitative, but not quantitative, agreement with the measured changes in transfer rates. Our analysis points to potential limitations of the FMO electronic Hamiltonian, which was originally derived by fitting spectra to perturbative theories. Overall, our work suggests that further experimental and theoretical analyses may be needed to understand the variations of exciton dynamics under different redox conditions.
{"title":"Non-perturbative exciton transfer rate analysis of the Fenna-Matthews-Olson photosynthetic complex under reducing and oxidizing conditions.","authors":"Hallmann Ó Gestsson, Charlie Nation, Jacob S Higgins, Gregory S Engel, Alexandra Olaya-Castro","doi":"10.1063/5.0251613","DOIUrl":"https://doi.org/10.1063/5.0251613","url":null,"abstract":"<p><p>Two-dimensional optical spectroscopy experiments have examined photoprotective mechanisms in the Fenna-Matthews-Olson (FMO) photosynthetic complex, showing that exciton transfer pathways change significantly depending on the environmental redox conditions. Higgins et al. [Proc. Natl. Acad. Sci. U. S. A. 118(11), e2018240118 (2021)] have theoretically linked these observations to changes in a quantum vibronic coupling, whereby onsite energies are altered under oxidizing conditions such that exciton energy gaps are detuned from a specific vibrational motion of the bacteriochlorophyll a. These arguments rely on an analysis of exciton transfer rates within Redfield theory, which is known to provide an inaccurate description of the influence of the vibrational environment on the exciton dynamics in the FMO complex. Here, we use a memory kernel formulation of the hierarchical equations of motion to obtain non-perturbative estimations of exciton transfer rates, which yield a modified physical picture. Our findings indicate that onsite energy shifts alone do not reproduce the reported rate changes in the oxidative environment. We systematically examine a model that includes combined changes in both site energies and the frequency of a local vibration in the oxidized complex while maintaining consistency with absorption spectra and achieving qualitative, but not quantitative, agreement with the measured changes in transfer rates. Our analysis points to potential limitations of the FMO electronic Hamiltonian, which was originally derived by fitting spectra to perturbative theories. Overall, our work suggests that further experimental and theoretical analyses may be needed to understand the variations of exciton dynamics under different redox conditions.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}