Controlling AxMn[Fe(CN)6] charge transfer pathways through tilt-engineering for enhanced metal-to-metal interactions†

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-08-31 DOI:10.1039/D4MA00262H
A. Regueiro, J. Castells-Gil, C. Shen, I. Mikulska, C. Allen, L. Bogani and R. Torres-Cavanillas
{"title":"Controlling AxMn[Fe(CN)6] charge transfer pathways through tilt-engineering for enhanced metal-to-metal interactions†","authors":"A. Regueiro, J. Castells-Gil, C. Shen, I. Mikulska, C. Allen, L. Bogani and R. Torres-Cavanillas","doi":"10.1039/D4MA00262H","DOIUrl":null,"url":null,"abstract":"<p >The induction of structural distortion in a controlled manner through tilt engineering has emerged as a potent method to finely tune the physical characteristics of Prussian blue analogues. Notably, this distortion can be chemically induced by filling their pores with cations that can interact with the cyanide ligands. With this objective in mind, we optimized the synthetic protocol to produce the stimuli-responsive Prussian blue analogue A<small><sub><em>x</em></sub></small>Mn[Fe(CN)<small><sub>6</sub></small>] with A = K<small><sup>+</sup></small>, Rb<small><sup>+</sup></small>, and Cs<small><sup>+</sup></small>, to tune its stimuli-responsive behavior by exchanging the cation inside pores. Our crystallographic analyses reveal that the smaller the cation, the more pronounced the structural distortion, with a notable 20-degree Fe–CN tilting when filling the cavities with K<small><sup>+</sup></small>, 10 degrees with Rb<small><sup>+</sup></small>, and 2 degrees with Cs<small><sup>+</sup></small>. Moreover, this controlled distortion offers a means to switch on/off its stimuli-responsive behavior, while modifying its magnetic response. Thereby empowering the manipulation of the PBA's physical properties through cationic exchange</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 18","pages":" 7473-7480"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00262h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The induction of structural distortion in a controlled manner through tilt engineering has emerged as a potent method to finely tune the physical characteristics of Prussian blue analogues. Notably, this distortion can be chemically induced by filling their pores with cations that can interact with the cyanide ligands. With this objective in mind, we optimized the synthetic protocol to produce the stimuli-responsive Prussian blue analogue AxMn[Fe(CN)6] with A = K+, Rb+, and Cs+, to tune its stimuli-responsive behavior by exchanging the cation inside pores. Our crystallographic analyses reveal that the smaller the cation, the more pronounced the structural distortion, with a notable 20-degree Fe–CN tilting when filling the cavities with K+, 10 degrees with Rb+, and 2 degrees with Cs+. Moreover, this controlled distortion offers a means to switch on/off its stimuli-responsive behavior, while modifying its magnetic response. Thereby empowering the manipulation of the PBA's physical properties through cationic exchange

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过倾斜工程控制 A x Mn[Fe(CN)6]电荷转移途径,增强金属间相互作用。
通过倾斜工程以受控方式诱导结构变形已成为精细调节普鲁士蓝类似物物理特性的有效方法。值得注意的是,这种畸变可以通过化学方法诱导,即在其孔隙中填充能与氰化物配体相互作用的阳离子。基于这一目标,我们优化了合成方案,制备出刺激响应型普鲁士蓝类似物 A x Mn[Fe(CN)6],其中 A = K+、Rb+ 和 Cs+,通过交换孔隙内的阳离子来调整其刺激响应行为。我们的晶体学分析表明,阳离子越小,结构畸变越明显,当空腔中填充 K+ 时,Fe-CN 明显倾斜 20 度,填充 Rb+ 时倾斜 10 度,填充 Cs+ 时倾斜 2 度。此外,这种受控变形还提供了一种方法来开关其刺激响应行为,同时改变其磁性响应。因此,可以通过阳离子交换操纵 PBA 的物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Self-assembling protein cages: from coiled-coil module to machine learning-driven de novo design of next-generation biomaterials. Multifunctional flexible carbon aerogels based on sustainable bacterial cellulose Redox active ZnO/2,5-dihydroxy terephthalic acid hybrid thin films prepared by one-step electrodeposition Enhanced treatment uniformity of chemical and biological liquids in cold atmospheric plasma system using gas bubble mixing Engineering 3D-printed standalone conductive nerve guides using soft bioinks for peripheral nerve injuries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1