Robustaflavone as a novel scaffold for inhibitors of native and auto-proteolysed human neutrophil elastase.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2024-08-01 Epub Date: 2024-09-09 DOI:10.1080/1062936X.2024.2394498
V Singh, Y Kumar, S Bhatnagar
{"title":"Robustaflavone as a novel scaffold for inhibitors of native and auto-proteolysed human neutrophil elastase.","authors":"V Singh, Y Kumar, S Bhatnagar","doi":"10.1080/1062936X.2024.2394498","DOIUrl":null,"url":null,"abstract":"<p><p>Human neutrophil elastase (HNE) plays a key role in initiating inflammation in the cardiopulmonary and systemic contexts. Pathological auto-proteolysed two-chain (tc) HNE exhibits reduced binding affinity with inhibitors. Using AutoDock Vina v1.2.0, 66 flavonoid inhibitors, sivelestat and alvelestat were docked with single-chain (sc) HNE and tcHNE. Schrodinger PHASE v13.4.132 was used to generate a 3D-QSAR model. Molecular dynamics (MD) simulations were conducted with AMBER v18. The 3D-QSAR model for flavonoids with scHNE showed <i>r</i><sup>2</sup> = 0.95 and <i>q</i><sup>2</sup> = 0.91. High-activity compounds had hydrophobic A/A2 and C/C2 rings in the S1 subsite, with hydrogen bond donors at C5 and C7 positions of the A/A2 ring, and the C4' position of the B/B1 ring. All flavonoids except robustaflavone occupied the S1'-S2' subsites of tcHNE with decreased AutoDock binding affinities. During MD simulations, robustaflavone remained highly stable with both HNE forms. Principal Component Analysis suggested that robustaflavone binding induced structural stability in both HNE forms. Cluster analysis and free energy landscape plots showed that robustaflavone remained within the sc and tcHNE binding site throughout the 100 ns MD simulation. The robustaflavone scaffold likely inhibits both tcHNE and scHNE. It is potentially superior to sivelestat and alvelestat and can aid in developing therapeutics targeting both forms of HNE.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 8","pages":"729-756"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2394498","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human neutrophil elastase (HNE) plays a key role in initiating inflammation in the cardiopulmonary and systemic contexts. Pathological auto-proteolysed two-chain (tc) HNE exhibits reduced binding affinity with inhibitors. Using AutoDock Vina v1.2.0, 66 flavonoid inhibitors, sivelestat and alvelestat were docked with single-chain (sc) HNE and tcHNE. Schrodinger PHASE v13.4.132 was used to generate a 3D-QSAR model. Molecular dynamics (MD) simulations were conducted with AMBER v18. The 3D-QSAR model for flavonoids with scHNE showed r2 = 0.95 and q2 = 0.91. High-activity compounds had hydrophobic A/A2 and C/C2 rings in the S1 subsite, with hydrogen bond donors at C5 and C7 positions of the A/A2 ring, and the C4' position of the B/B1 ring. All flavonoids except robustaflavone occupied the S1'-S2' subsites of tcHNE with decreased AutoDock binding affinities. During MD simulations, robustaflavone remained highly stable with both HNE forms. Principal Component Analysis suggested that robustaflavone binding induced structural stability in both HNE forms. Cluster analysis and free energy landscape plots showed that robustaflavone remained within the sc and tcHNE binding site throughout the 100 ns MD simulation. The robustaflavone scaffold likely inhibits both tcHNE and scHNE. It is potentially superior to sivelestat and alvelestat and can aid in developing therapeutics targeting both forms of HNE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
罗布麻黄酮作为一种新型支架,可用于抑制本地和自体蛋白水解的人类中性粒细胞弹性蛋白酶。
人类中性粒细胞弹性蛋白酶(HNE)在引发心肺和全身炎症方面发挥着关键作用。病理自体蛋白水解的双链(tc)HNE与抑制剂的结合亲和力降低。使用 AutoDock Vina v1.2.0,66 种黄酮类抑制剂、sivelestat 和 alvelestat 与单链 (sc) HNE 和 tcHNE 进行了对接。使用 Schrodinger PHASE v13.4.132 生成三维-QSAR 模型。使用 AMBER v18 进行了分子动力学(MD)模拟。黄酮类化合物与 scHNE 的 3D-QSAR 模型显示 r2 = 0.95,q2 = 0.91。高活性化合物的 S1 亚位上有疏水的 A/A2 和 C/C2 环,A/A2 环的 C5 和 C7 位置以及 B/B1 环的 C4'位置有氢键供体。除壮黄酮外,所有黄酮类化合物都占据了tcHNE的S1'-S2'亚位点,但AutoDock结合亲和力都有所下降。在 MD 模拟过程中,雄黄酮与两种 HNE 形态均保持高度稳定。主成分分析表明,强力黄酮的结合诱导了两种 HNE 形式的结构稳定性。聚类分析和自由能分布图显示,在整个 100 ns MD 模拟过程中,强力黄酮始终保持在 sc 和 tcHNE 结合位点内。强力黄酮支架可能对 tcHNE 和 scHNE 都有抑制作用。它可能优于西维司他和阿维司他,有助于开发针对两种形式 HNE 的疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms. Structure-based drug design of pre-clinical candidate nanopiperine: a direct target for CYP1A1 protein to mitigate hyperglycaemia and associated microbes. Structure-based pharmacophore modelling for ErbB4-kinase inhibition: a systematic computational approach for small molecule drug discovery for breast cancer. A deep learning model based on the BERT pre-trained model to predict the antiproliferative activity of anti-cancer chemical compounds. Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agents: virtual screening and molecular dynamic studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1