{"title":"Investigating the use of signal detection information in supervised learning-based image denoising with consideration of task-shift.","authors":"Kaiyan Li, Hua Li, Mark A Anastasio","doi":"10.1117/1.JMI.11.5.055501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recently, learning-based denoising methods that incorporate task-relevant information into the training procedure have been developed to enhance the utility of the denoised images. However, this line of research is relatively new and underdeveloped, and some fundamental issues remain unexplored. Our purpose is to yield insights into general issues related to these task-informed methods. This includes understanding the impact of denoising on objective measures of image quality (IQ) when the specified task at inference time is different from that employed for model training, a phenomenon we refer to as \"task-shift.\"</p><p><strong>Approach: </strong>A virtual imaging test bed comprising a stylized computational model of a chest X-ray computed tomography imaging system was employed to enable a controlled and tractable study design. A canonical, fully supervised, convolutional neural network-based denoising method was purposely adopted to understand the underlying issues that may be relevant to a variety of applications and more advanced denoising or image reconstruction methods. Signal detection and signal detection-localization tasks under signal-known-statistically with background-known-statistically conditions were considered, and several distinct types of numerical observers were employed to compute estimates of the task performance. Studies were designed to reveal how a task-informed transfer-learning approach can influence the tradeoff between conventional and task-based measures of image quality within the context of the considered tasks. In addition, the impact of task-shift on these image quality measures was assessed.</p><p><strong>Results: </strong>The results indicated that certain tradeoffs can be achieved such that the resulting AUC value was significantly improved and the degradation of physical IQ measures was statistically insignificant. It was also observed that introducing task-shift degrades the task performance as expected. The degradation was significant when a relatively simple task was considered for network training and observer performance on a more complex one was assessed at inference time.</p><p><strong>Conclusions: </strong>The presented results indicate that the task-informed training method can improve the observer performance while providing control over the tradeoff between traditional and task-based measures of image quality. The behavior of a task-informed model fine-tuning procedure was demonstrated, and the impact of task-shift on task-based image quality measures was investigated.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 5","pages":"055501"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.5.055501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Recently, learning-based denoising methods that incorporate task-relevant information into the training procedure have been developed to enhance the utility of the denoised images. However, this line of research is relatively new and underdeveloped, and some fundamental issues remain unexplored. Our purpose is to yield insights into general issues related to these task-informed methods. This includes understanding the impact of denoising on objective measures of image quality (IQ) when the specified task at inference time is different from that employed for model training, a phenomenon we refer to as "task-shift."
Approach: A virtual imaging test bed comprising a stylized computational model of a chest X-ray computed tomography imaging system was employed to enable a controlled and tractable study design. A canonical, fully supervised, convolutional neural network-based denoising method was purposely adopted to understand the underlying issues that may be relevant to a variety of applications and more advanced denoising or image reconstruction methods. Signal detection and signal detection-localization tasks under signal-known-statistically with background-known-statistically conditions were considered, and several distinct types of numerical observers were employed to compute estimates of the task performance. Studies were designed to reveal how a task-informed transfer-learning approach can influence the tradeoff between conventional and task-based measures of image quality within the context of the considered tasks. In addition, the impact of task-shift on these image quality measures was assessed.
Results: The results indicated that certain tradeoffs can be achieved such that the resulting AUC value was significantly improved and the degradation of physical IQ measures was statistically insignificant. It was also observed that introducing task-shift degrades the task performance as expected. The degradation was significant when a relatively simple task was considered for network training and observer performance on a more complex one was assessed at inference time.
Conclusions: The presented results indicate that the task-informed training method can improve the observer performance while providing control over the tradeoff between traditional and task-based measures of image quality. The behavior of a task-informed model fine-tuning procedure was demonstrated, and the impact of task-shift on task-based image quality measures was investigated.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.