{"title":"Mitochondrial genetic variations in leukemia: a comprehensive overview.","authors":"Ao Zhang, Wenbing Liu, Shaowei Qiu","doi":"10.1097/BS9.0000000000000205","DOIUrl":null,"url":null,"abstract":"<p><p>Leukemias are a group of heterogeneous hematological malignancies driven by diverse genetic variations, and the advent of genomic sequencing technologies facilitates the investigation of genetic abnormalities in leukemia. However, these sequencing-based studies mainly focus on nuclear DNAs. Increasing evidence indicates that mitochondrial dysfunction is an important mechanism of leukemia pathogenesis, which is closely related to the mitochondrial genome variations. Here, we provide an overview of current research progress concerning mitochondrial genetic variations in leukemia, encompassing gene mutations and copy number variations. We also summarize currently accessible mitochondrial DNA (mtDNA) sequencing methods. Notably, somatic mtDNA mutations may serve as natural genetic barcodes for lineage tracing and longitudinal assessment of clonal dynamics. Collectively, these findings enhance our understanding of leukemia pathogenesis and foster the identification of novel therapeutic targets and interventions.</p>","PeriodicalId":67343,"journal":{"name":"血液科学(英文)","volume":"6 4","pages":"e00205"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"血液科学(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/BS9.0000000000000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leukemias are a group of heterogeneous hematological malignancies driven by diverse genetic variations, and the advent of genomic sequencing technologies facilitates the investigation of genetic abnormalities in leukemia. However, these sequencing-based studies mainly focus on nuclear DNAs. Increasing evidence indicates that mitochondrial dysfunction is an important mechanism of leukemia pathogenesis, which is closely related to the mitochondrial genome variations. Here, we provide an overview of current research progress concerning mitochondrial genetic variations in leukemia, encompassing gene mutations and copy number variations. We also summarize currently accessible mitochondrial DNA (mtDNA) sequencing methods. Notably, somatic mtDNA mutations may serve as natural genetic barcodes for lineage tracing and longitudinal assessment of clonal dynamics. Collectively, these findings enhance our understanding of leukemia pathogenesis and foster the identification of novel therapeutic targets and interventions.