Sagar Chandra , Suranjit Kumar , Mahendra K. Samal , Vivek M. Chavan
{"title":"Influence of textural variability on plastic response of porous crystal embedded in polycrystalline aggregate: A crystal plasticity study","authors":"Sagar Chandra , Suranjit Kumar , Mahendra K. Samal , Vivek M. Chavan","doi":"10.1016/j.ijplas.2024.104117","DOIUrl":null,"url":null,"abstract":"<div><p>Damage evolution in polycrystalline aggregates is complicated by the intricate interplay of crystallographic orientation of the porous grain and the surrounding anisotropic matrix. Therefore, formulation of design rules and damage models for polycrystalline materials proves daunting due to relative lack of thorough understanding of the underlying heterogeneity at the mesoscale. This work explores the orientation dependent void growth in a porous crystal embedded in an anisotropic polycrystalline matrix with different initial textures. Polycrystalline face-centered cubic based aggregate is simulated within the framework of crystal plasticity finite element method. Porosity is first modeled in the form of a single pre-existing spherical void in the central grain of the randomly oriented polycrystal. One-hundred crystallographic orientations of the central grain in three-dimensional Euler space are analyzed to reveal the orientation dependent trends of the porous grain. To account for textural variability, the analysis is repeated for polycrystals exhibiting preferred textures like Cube, Brass, Copper and Goss. In this manner, interesting orientation dependent trends in basic tenets of void growth like yield strength, coalescence strain and porosity evolution are unraveled across various polycrystalline textures. To account for spatial heterogeneity as well, porosity in the central grain is then re-distributed and the aforementioned analysis is repeated for all the crystallographic orientations of the central grain embedded in polycrystals with different textures. Owing to the large amount of data thus generated, statistical analysis is invoked to identify stimulating trends and key statistical variables governing the strength and toughness. Consequently, a statistical void growth model is also presented by assessing the CP simulation results and identifying suitable distribution function governing the growth of voids in polycrystals. The modeling framework is expected to inform porous plasticity models aimed at capturing damage evolution in porous grains embedded in polycrystalline materials exhibiting topological and crystallographic anisotropy.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"182 ","pages":"Article 104117"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002444","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Damage evolution in polycrystalline aggregates is complicated by the intricate interplay of crystallographic orientation of the porous grain and the surrounding anisotropic matrix. Therefore, formulation of design rules and damage models for polycrystalline materials proves daunting due to relative lack of thorough understanding of the underlying heterogeneity at the mesoscale. This work explores the orientation dependent void growth in a porous crystal embedded in an anisotropic polycrystalline matrix with different initial textures. Polycrystalline face-centered cubic based aggregate is simulated within the framework of crystal plasticity finite element method. Porosity is first modeled in the form of a single pre-existing spherical void in the central grain of the randomly oriented polycrystal. One-hundred crystallographic orientations of the central grain in three-dimensional Euler space are analyzed to reveal the orientation dependent trends of the porous grain. To account for textural variability, the analysis is repeated for polycrystals exhibiting preferred textures like Cube, Brass, Copper and Goss. In this manner, interesting orientation dependent trends in basic tenets of void growth like yield strength, coalescence strain and porosity evolution are unraveled across various polycrystalline textures. To account for spatial heterogeneity as well, porosity in the central grain is then re-distributed and the aforementioned analysis is repeated for all the crystallographic orientations of the central grain embedded in polycrystals with different textures. Owing to the large amount of data thus generated, statistical analysis is invoked to identify stimulating trends and key statistical variables governing the strength and toughness. Consequently, a statistical void growth model is also presented by assessing the CP simulation results and identifying suitable distribution function governing the growth of voids in polycrystals. The modeling framework is expected to inform porous plasticity models aimed at capturing damage evolution in porous grains embedded in polycrystalline materials exhibiting topological and crystallographic anisotropy.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.