Evgeny Chuvilin , Sergey Grebenkin , Maksim Zhmaev
{"title":"Gas flow in frozen hydrate-bearing sediments exposed to compression and high-pressure gradients: Experimental modeling","authors":"Evgeny Chuvilin , Sergey Grebenkin , Maksim Zhmaev","doi":"10.1016/j.coldregions.2024.104310","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in temperature and pressure patterns in gas- and hydrate-saturated permafrost caused by natural geodynamic processes or human impacts can lead to the active flow of gas through unfrozen zones, and its explosive emission is often accompanied by crater formation. Gas flow and accumulation in the shallow permafrost can be explained by the conditions of gas pressure equal to or exceeding the overburden pressure and high-pressure gradients. For the first time, filtration tests were conducted on ice- and hydrate-saturated rocks under uniaxial compression at various negative temperatures using a developed methodology. The modeling of gas flow in a mixture of ice-saturated sand and 25 % montmorillonite at gas pressure gradients within 2 MPa, shows that gas flow can start at warm negative temperatures near the thaw point. Pore hydrate formation in frozen sand heated to positive temperatures and frozen back led to a linear decrease in gas permeability by up to eight times. However, the behavior of gas permeability during hydrate dissociation is nonlinear as it increased within a few hours after the onset of dissociation, but then decreased exponentially in the following 24 h.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"228 ","pages":"Article 104310"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in temperature and pressure patterns in gas- and hydrate-saturated permafrost caused by natural geodynamic processes or human impacts can lead to the active flow of gas through unfrozen zones, and its explosive emission is often accompanied by crater formation. Gas flow and accumulation in the shallow permafrost can be explained by the conditions of gas pressure equal to or exceeding the overburden pressure and high-pressure gradients. For the first time, filtration tests were conducted on ice- and hydrate-saturated rocks under uniaxial compression at various negative temperatures using a developed methodology. The modeling of gas flow in a mixture of ice-saturated sand and 25 % montmorillonite at gas pressure gradients within 2 MPa, shows that gas flow can start at warm negative temperatures near the thaw point. Pore hydrate formation in frozen sand heated to positive temperatures and frozen back led to a linear decrease in gas permeability by up to eight times. However, the behavior of gas permeability during hydrate dissociation is nonlinear as it increased within a few hours after the onset of dissociation, but then decreased exponentially in the following 24 h.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.