{"title":"Dehydro acetic acid analogue Schiff base as multimode fluorescence chemosensors for Th4+ and Ni2+ ions and its application to in-vivo bioimaging","authors":"","doi":"10.1016/j.jphotochem.2024.115999","DOIUrl":null,"url":null,"abstract":"<div><p>Dehydroacetic acid analogue (DHA) and 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (COM) Schiff base ligand (<strong>COM-DHA</strong>)<!--> <!-->as dual-mode fluorescence chemosensor<!--> <!-->was synthesized and structurally characterised by using elemental analysis, FTIR, NMR, and Mass analysis. The free probe <strong>COM-DHA</strong> shows distinct fluorescence emission at 476 nm, upon interaction with Ni<sup>2+</sup> the emission intensity was quenched and with Th<sup>4+</sup> the emission intensity was redshirted to 500 nm. Further, the ratiometric fluorescence change (I<sub>500</sub>/I<sub>476</sub>) was used to detect Th<sup>4+</sup>, and a turn-off fluorescence probe <strong>COM-DHA</strong> at 476 nm was used to detect Ni<sup>2+</sup> ions. The <strong>COM-DHA</strong> forms a 2:1 stoichiometric complex with both Ni<sup>2+</sup>/Th<sup>4+</sup> ions with an estimated association constant of 4.84 × 10<sup>4</sup> and 6.68 × 10<sup>4</sup> M<sup>−2</sup> respectively. A further probe <strong>COM-DHA</strong> is that it has a wide working pH range (5 to 10) with a short response time (2 to 3 min). The detection limit of <strong>COM-DHA</strong> towards Ni<sup>2+</sup> and Th<sup>4+</sup> was found to be 77.8<!--> <!-->and 48.7 nM, respectively. The, DFT/TD-DFT calculations and FTIR analysis were used to study the binding mechanism between <strong>COM-DAH</strong> and Ni<sup>2+</sup>/Th<sup>4+</sup> ions. Furthermore, the proposed probe <strong>COM-DHA</strong> <!-->has successfully quantified trace amounts of Ni<sup>2+</sup> and Th<sup>4+</sup> <!-->in real samples and applied them to the <em>in-vivo</em> bioimaging of Th<sup>4+</sup> in <em>C. elegans</em> model.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005434","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dehydroacetic acid analogue (DHA) and 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (COM) Schiff base ligand (COM-DHA) as dual-mode fluorescence chemosensor was synthesized and structurally characterised by using elemental analysis, FTIR, NMR, and Mass analysis. The free probe COM-DHA shows distinct fluorescence emission at 476 nm, upon interaction with Ni2+ the emission intensity was quenched and with Th4+ the emission intensity was redshirted to 500 nm. Further, the ratiometric fluorescence change (I500/I476) was used to detect Th4+, and a turn-off fluorescence probe COM-DHA at 476 nm was used to detect Ni2+ ions. The COM-DHA forms a 2:1 stoichiometric complex with both Ni2+/Th4+ ions with an estimated association constant of 4.84 × 104 and 6.68 × 104 M−2 respectively. A further probe COM-DHA is that it has a wide working pH range (5 to 10) with a short response time (2 to 3 min). The detection limit of COM-DHA towards Ni2+ and Th4+ was found to be 77.8 and 48.7 nM, respectively. The, DFT/TD-DFT calculations and FTIR analysis were used to study the binding mechanism between COM-DAH and Ni2+/Th4+ ions. Furthermore, the proposed probe COM-DHA has successfully quantified trace amounts of Ni2+ and Th4+ in real samples and applied them to the in-vivo bioimaging of Th4+ in C. elegans model.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.