{"title":"Association of meteorological variables with leaf spot and fruit rot disease incidence in eggplant and YOLOv8-based disease classification","authors":"Arya Kaniyassery , Ayush Goyal , Sachin Ashok Thorat , Mattu Radhakrishna Rao , Harsha K. Chandrashekar , Thokur Sreepathy Murali , Annamalai Muthusamy","doi":"10.1016/j.ecoinf.2024.102809","DOIUrl":null,"url":null,"abstract":"<div><p>Eggplant is one of the major vegetables consumed worldwide. Several fungal, bacterial, and viral diseases challenge the yield and quality of eggplant. The incidence of plant diseases is strongly influenced by weather factors such as temperature, humidity, rainfall, and wind speed. Mattu Gulla (MG) is a GI-tagged traditional variety of eggplant grown in Mattu village of the Udupi district in Karnataka state, India, with a cultural legacy of more than four centuries. In this study, we investigated the relationships between weather parameters and disease incidence in Mattu Gulla. Leaf spot (LS) and fruit rot (FR) are the major diseases affecting this plant variety. The influence of plant age and weather parameters on the modulation of the disease incidence (%) [DI (%)] of leaf spot and fruit rot was recorded and analyzed via correlation and regression. Prediction equations for disease incidence was derived via regression. A significant negative correlation was observed between the leaf spot DI (%) and minimum temperature (Min. temp), and a positive correlation was observed between the DI (%) and fruit rot. In the case of FR, the DI (%) is also significantly positively correlated with wind speed (WS), temperature, maximum relative humidity (RH I), rainfall (RF), and wind speed (WS). An RH I of 86–87 % was favorable for the incidence of fruit rot in the field. Regression analysis revealed a significant association between Min. temp and leaf spot DI (%), and in the case of fruit rot DI (%), the association was with Min. temp and WS. An android application, “Leaf Guard,” has been developed for AI-based disease detection in eggplant. During testing, the accuracy of the trained model reached 98.2 %.</p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003510/pdfft?md5=74fceef23e01c58be36f0ae8087f1e59&pid=1-s2.0-S1574954124003510-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003510","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eggplant is one of the major vegetables consumed worldwide. Several fungal, bacterial, and viral diseases challenge the yield and quality of eggplant. The incidence of plant diseases is strongly influenced by weather factors such as temperature, humidity, rainfall, and wind speed. Mattu Gulla (MG) is a GI-tagged traditional variety of eggplant grown in Mattu village of the Udupi district in Karnataka state, India, with a cultural legacy of more than four centuries. In this study, we investigated the relationships between weather parameters and disease incidence in Mattu Gulla. Leaf spot (LS) and fruit rot (FR) are the major diseases affecting this plant variety. The influence of plant age and weather parameters on the modulation of the disease incidence (%) [DI (%)] of leaf spot and fruit rot was recorded and analyzed via correlation and regression. Prediction equations for disease incidence was derived via regression. A significant negative correlation was observed between the leaf spot DI (%) and minimum temperature (Min. temp), and a positive correlation was observed between the DI (%) and fruit rot. In the case of FR, the DI (%) is also significantly positively correlated with wind speed (WS), temperature, maximum relative humidity (RH I), rainfall (RF), and wind speed (WS). An RH I of 86–87 % was favorable for the incidence of fruit rot in the field. Regression analysis revealed a significant association between Min. temp and leaf spot DI (%), and in the case of fruit rot DI (%), the association was with Min. temp and WS. An android application, “Leaf Guard,” has been developed for AI-based disease detection in eggplant. During testing, the accuracy of the trained model reached 98.2 %.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.