Discrete element method model calibration and validation for the spreading step of the powder bed fusion process to predict the quality of the layer surface
Marco Lupo , Sina Zinatlou Ajabshir, Daniele Sofia , Diego Barletta, Massimo Poletto
{"title":"Discrete element method model calibration and validation for the spreading step of the powder bed fusion process to predict the quality of the layer surface","authors":"Marco Lupo , Sina Zinatlou Ajabshir, Daniele Sofia , Diego Barletta, Massimo Poletto","doi":"10.1016/j.partic.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>A Discrete Element Method model, including interparticle cohesive forces, was calibrated and validated to develop a tool to predict the powder layer’s quality in the powder bed fusion process. An elastic contact model was used to describe cohesive interparticle interactions. The surface energy of the model particles was estimated by assuming that the pull-off force should provide the strength of the material evaluated at low consolidation with shear test experiments. The particle rolling friction was calibrated considering the bulk density of the layer produced by the spreading tool. The model was validated with the experiments by comparing the wavelet power spectra obtained with the simulations with those of the experimental layers illuminated by grazing light. The calibration proposed in this study demonstrated superior performance compared to our previous methods, which relied on measuring the angle of repose and unconfined yield strength.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 261-273"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674200124001652/pdfft?md5=72291b6525bd0ff74498e6cb38b586d8&pid=1-s2.0-S1674200124001652-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001652","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A Discrete Element Method model, including interparticle cohesive forces, was calibrated and validated to develop a tool to predict the powder layer’s quality in the powder bed fusion process. An elastic contact model was used to describe cohesive interparticle interactions. The surface energy of the model particles was estimated by assuming that the pull-off force should provide the strength of the material evaluated at low consolidation with shear test experiments. The particle rolling friction was calibrated considering the bulk density of the layer produced by the spreading tool. The model was validated with the experiments by comparing the wavelet power spectra obtained with the simulations with those of the experimental layers illuminated by grazing light. The calibration proposed in this study demonstrated superior performance compared to our previous methods, which relied on measuring the angle of repose and unconfined yield strength.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.