Shihao Nan , Xinmiao Ren , Mengshi Xiao , Lin Zhu , Haijin Mou , Ningyang Li , Rong Li , Shaoping Nie , Xiaodan Fu
{"title":"Structural characterization and prebiotic activity evaluation of novel fucosylated disaccharides prepared from bacterial exopolysaccharides","authors":"Shihao Nan , Xinmiao Ren , Mengshi Xiao , Lin Zhu , Haijin Mou , Ningyang Li , Rong Li , Shaoping Nie , Xiaodan Fu","doi":"10.1016/j.fbio.2024.105055","DOIUrl":null,"url":null,"abstract":"<div><p>The deoxyhexose sugar <span>l</span>-fucose and fucosylated oligosaccharides (FCO) are essential for various biological processes in human body and associated gut microbiota. Bacterial exopolysaccharides offer a promising new source for preparing functional oligosaccharides. Here, FCO were obtained through acidolysis of fucose-containing exopolysaccharides with a molecular weight of 5.9 × 10<sup>3</sup> kDa, derived from <em>Clavibacter michiganensis</em> M2. Structural analysis revealed that the main disaccharide components of FCO exhibited a molecular weight of 326 Da and a monosaccharide composition of fucose, galactose, and glucose in a 3:1:2 ratio. Nuclear magnetic resonance indicated that the disaccharide fragments consisted of two backbones of α-<em>Galp</em>-(1 → 2)-α-<em>Fucp</em> and β-<em>Glcp</em>-(1 → 4)-β-<em>Fucp</em>, respectively. <em>In vitro</em> fermentation of FCO with human fecal cultures resulted in an increased abundance of <em>Bifidobacterium</em> and <em>Bacteroides</em>, and a reduction in <em>Escherichia-Shigella</em> and <em>Fusobacterium</em>. This research outlines a novel structural fucosylated oligosaccharide and its preparation method, suggesting its potential application as a promising new prebiotic.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429224014858","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The deoxyhexose sugar l-fucose and fucosylated oligosaccharides (FCO) are essential for various biological processes in human body and associated gut microbiota. Bacterial exopolysaccharides offer a promising new source for preparing functional oligosaccharides. Here, FCO were obtained through acidolysis of fucose-containing exopolysaccharides with a molecular weight of 5.9 × 103 kDa, derived from Clavibacter michiganensis M2. Structural analysis revealed that the main disaccharide components of FCO exhibited a molecular weight of 326 Da and a monosaccharide composition of fucose, galactose, and glucose in a 3:1:2 ratio. Nuclear magnetic resonance indicated that the disaccharide fragments consisted of two backbones of α-Galp-(1 → 2)-α-Fucp and β-Glcp-(1 → 4)-β-Fucp, respectively. In vitro fermentation of FCO with human fecal cultures resulted in an increased abundance of Bifidobacterium and Bacteroides, and a reduction in Escherichia-Shigella and Fusobacterium. This research outlines a novel structural fucosylated oligosaccharide and its preparation method, suggesting its potential application as a promising new prebiotic.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.