Photocatalytic activities of graphene quantum dots constructed from four different nitropyrenes on water redox reaction and organic pollutant degradation

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-09-01 DOI:10.1016/j.flatc.2024.100735
Jingjing Wang , Ruonan Liu , Yuxin Qiao, Shuxin Liu, Chuanguang Qin
{"title":"Photocatalytic activities of graphene quantum dots constructed from four different nitropyrenes on water redox reaction and organic pollutant degradation","authors":"Jingjing Wang ,&nbsp;Ruonan Liu ,&nbsp;Yuxin Qiao,&nbsp;Shuxin Liu,&nbsp;Chuanguang Qin","doi":"10.1016/j.flatc.2024.100735","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene quantum dots (GQDs) are nanometer-sized fragments of graphene with unique characters, which make them as new interesting application candidates in the fields of chemical, environmental and energy engineering. In this paper, the four nitropyrenes with different nitration degree, such as mononitropyrene, dinitropyrene, trinitropyrene and tetranitropyrene, were successfully synthesized and used to rationally construct corresponding graphite phase quantum dots named GQD(1), GQD(2), GQD(3) and GQD(4) in turn. Subsequently, the relationship between the structure and photocatalytic activity of different intermediates for the preparation of GQD were systematically studied. Degree of polymerization and lateral size of GQDs prepared with different intermediates significantly affected their photocatalytic performance. Through comparision of the photocatalytic water splitting reaction of four GQDs, it was found that GQD(4) had the best photocatalytic efficiency among four GQDs.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100735"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001296","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene quantum dots (GQDs) are nanometer-sized fragments of graphene with unique characters, which make them as new interesting application candidates in the fields of chemical, environmental and energy engineering. In this paper, the four nitropyrenes with different nitration degree, such as mononitropyrene, dinitropyrene, trinitropyrene and tetranitropyrene, were successfully synthesized and used to rationally construct corresponding graphite phase quantum dots named GQD(1), GQD(2), GQD(3) and GQD(4) in turn. Subsequently, the relationship between the structure and photocatalytic activity of different intermediates for the preparation of GQD were systematically studied. Degree of polymerization and lateral size of GQDs prepared with different intermediates significantly affected their photocatalytic performance. Through comparision of the photocatalytic water splitting reaction of four GQDs, it was found that GQD(4) had the best photocatalytic efficiency among four GQDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用四种不同的硝基苯烯构建的石墨烯量子点在水氧化还原反应和有机污染物降解中的光催化活性
石墨烯量子点(GQDs)是石墨烯的纳米级片段,具有独特的性质,是化学、环境和能源工程领域新的有趣的应用候选材料。本文成功合成了四种不同硝化程度的硝基苯烯,如一硝基苯烯、二硝基苯烯、三硝基苯烯和四硝基苯烯,并利用它们合理地构建了相应的石墨相量子点,依次命名为 GQD(1)、GQD(2)、GQD(3)和 GQD(4)。随后,系统研究了制备 GQD 的不同中间产物的结构与光催化活性之间的关系。不同中间体制备的 GQD 的聚合度和横向尺寸对其光催化性能有显著影响。通过比较四种 GQD 的光催化水分离反应发现,GQD(4) 的光催化效率是四种 GQD 中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
In-situ grown hexagonal rod-like ZIF-L(Zn/Co) variant on reduced graphene oxide (rGO) for the enhanced electrochemical sensing of acetaminophen Review on multifunctional elastomeric composites-based sensing for monitoring of aquatic and terrestrial living species A high-performance boron nitride nanocomposite coating with enhanced anticorrosion and flame retardant properties for aerospace applications Porous N, P co-doping Ti3C2Tx MXene for high-performance capacitive deionization Surface functionalization of WS2 nanosheets with Poly(N-vinylcaprolactam) and vinylacetic acid for targeted drug release in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1