Pruning-guided feature distillation for an efficient transformer-based pose estimation model

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-03-31 DOI:10.1049/cvi2.12277
Dong-hwi Kim, Dong-hun Lee, Aro Kim, Jinwoo Jeong, Jong Taek Lee, Sungjei Kim, Sang-hyo Park
{"title":"Pruning-guided feature distillation for an efficient transformer-based pose estimation model","authors":"Dong-hwi Kim,&nbsp;Dong-hun Lee,&nbsp;Aro Kim,&nbsp;Jinwoo Jeong,&nbsp;Jong Taek Lee,&nbsp;Sungjei Kim,&nbsp;Sang-hyo Park","doi":"10.1049/cvi2.12277","DOIUrl":null,"url":null,"abstract":"<p>The authors propose a compression strategy for a 3D human pose estimation model based on a transformer which yields high accuracy but increases the model size. This approach involves a pruning-guided determination of the search range to achieve lightweight pose estimation under limited training time and to identify the optimal model size. In addition, the authors propose a transformer-based feature distillation (TFD) method, which efficiently exploits the pose estimation model in terms of both model size and accuracy by leveraging transformer architecture characteristics. Pruning-guided TFD is the first approach for 3D human pose estimation that employs transformer architecture. The proposed approach was tested on various extensive data sets, and the results show that it can reduce the model size by 30% compared to the state-of-the-art while ensuring high accuracy.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"745-758"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12277","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12277","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The authors propose a compression strategy for a 3D human pose estimation model based on a transformer which yields high accuracy but increases the model size. This approach involves a pruning-guided determination of the search range to achieve lightweight pose estimation under limited training time and to identify the optimal model size. In addition, the authors propose a transformer-based feature distillation (TFD) method, which efficiently exploits the pose estimation model in terms of both model size and accuracy by leveraging transformer architecture characteristics. Pruning-guided TFD is the first approach for 3D human pose estimation that employs transformer architecture. The proposed approach was tested on various extensive data sets, and the results show that it can reduce the model size by 30% compared to the state-of-the-art while ensuring high accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器的高效姿态估计模型的剪枝引导特征提炼
作者提出了一种基于变压器的三维人体姿态估计模型压缩策略,该策略可获得高精度,但会增加模型大小。这种方法包括在剪枝指导下确定搜索范围,以便在有限的训练时间内实现轻量级姿势估计,并确定最佳模型大小。此外,作者还提出了一种基于变压器的特征蒸馏(TFD)方法,该方法利用变压器架构的特点,在模型大小和精度方面有效地利用了姿势估计模型。剪枝引导的 TFD 是第一种采用变压器架构的三维人体姿态估计方法。我们在各种广泛的数据集上对所提出的方法进行了测试,结果表明,与最先进的方法相比,该方法能在确保高精度的同时将模型大小减少 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1