Dong-hwi Kim, Dong-hun Lee, Aro Kim, Jinwoo Jeong, Jong Taek Lee, Sungjei Kim, Sang-hyo Park
{"title":"Pruning-guided feature distillation for an efficient transformer-based pose estimation model","authors":"Dong-hwi Kim, Dong-hun Lee, Aro Kim, Jinwoo Jeong, Jong Taek Lee, Sungjei Kim, Sang-hyo Park","doi":"10.1049/cvi2.12277","DOIUrl":null,"url":null,"abstract":"<p>The authors propose a compression strategy for a 3D human pose estimation model based on a transformer which yields high accuracy but increases the model size. This approach involves a pruning-guided determination of the search range to achieve lightweight pose estimation under limited training time and to identify the optimal model size. In addition, the authors propose a transformer-based feature distillation (TFD) method, which efficiently exploits the pose estimation model in terms of both model size and accuracy by leveraging transformer architecture characteristics. Pruning-guided TFD is the first approach for 3D human pose estimation that employs transformer architecture. The proposed approach was tested on various extensive data sets, and the results show that it can reduce the model size by 30% compared to the state-of-the-art while ensuring high accuracy.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"745-758"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12277","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12277","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The authors propose a compression strategy for a 3D human pose estimation model based on a transformer which yields high accuracy but increases the model size. This approach involves a pruning-guided determination of the search range to achieve lightweight pose estimation under limited training time and to identify the optimal model size. In addition, the authors propose a transformer-based feature distillation (TFD) method, which efficiently exploits the pose estimation model in terms of both model size and accuracy by leveraging transformer architecture characteristics. Pruning-guided TFD is the first approach for 3D human pose estimation that employs transformer architecture. The proposed approach was tested on various extensive data sets, and the results show that it can reduce the model size by 30% compared to the state-of-the-art while ensuring high accuracy.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf