M. Safaei, M. R. Karimi, D. Pourbandari, M. Baghani, D. George, M. Baniassadi
{"title":"Multiscale investigation of debonding behavior in anisotropic graphene–polyethylene metamaterial nanocomposites","authors":"M. Safaei, M. R. Karimi, D. Pourbandari, M. Baghani, D. George, M. Baniassadi","doi":"10.1007/s00161-024-01328-x","DOIUrl":null,"url":null,"abstract":"<div><p>The first phase of this study aimed to validate multi-scale approaches based on Representative Volume Elements (RVEs) for graphene–polyethylene nanocomposites.\n stress–strain curves of experimental results were compared with numerical homogenization results. The stress amplification obtained from these simulations was used to predict GNP aspect ratios, demonstrating good agreement with permeability results. After validation of the multiscale approach, this study investigates the adhesion between nanoparticles and matrix in anisotropic GNP-HDPE metamaterial nanocomposites, emphasizing the role of the carboxyl (COOH) functional group in improving adhesion. The RVE model is used to investigate the debonding initiation and progression in these anisotropic nanocomposites under tensile and shear loading. Results indicate a variance in debonding onset and growth depending on orientation relative to the GNP axis. In tensile loading, debonding initiates at higher strains along the GNP axis than perpendicularly. Under shear loading within an anisotropic distribution, debonding behaviour varies significantly between planes perpendicular and parallel to the GNP axis. GNP surfaces with fully debonded surfaces slightly exceed 0.6% perpendicular to the GNP axis but increase to over 10.5% parallel to it.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 6","pages":"1767 - 1785"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01328-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The first phase of this study aimed to validate multi-scale approaches based on Representative Volume Elements (RVEs) for graphene–polyethylene nanocomposites.
stress–strain curves of experimental results were compared with numerical homogenization results. The stress amplification obtained from these simulations was used to predict GNP aspect ratios, demonstrating good agreement with permeability results. After validation of the multiscale approach, this study investigates the adhesion between nanoparticles and matrix in anisotropic GNP-HDPE metamaterial nanocomposites, emphasizing the role of the carboxyl (COOH) functional group in improving adhesion. The RVE model is used to investigate the debonding initiation and progression in these anisotropic nanocomposites under tensile and shear loading. Results indicate a variance in debonding onset and growth depending on orientation relative to the GNP axis. In tensile loading, debonding initiates at higher strains along the GNP axis than perpendicularly. Under shear loading within an anisotropic distribution, debonding behaviour varies significantly between planes perpendicular and parallel to the GNP axis. GNP surfaces with fully debonded surfaces slightly exceed 0.6% perpendicular to the GNP axis but increase to over 10.5% parallel to it.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.