Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-09 DOI:10.1002/aenm.202402746
Jin Li, Junjie Chen, Xiaosa Xu, Zhenyu Wang, Jiadong Shen, Jing Sun, Baoling Huang, Tianshou Zhao
{"title":"Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries","authors":"Jin Li, Junjie Chen, Xiaosa Xu, Zhenyu Wang, Jiadong Shen, Jing Sun, Baoling Huang, Tianshou Zhao","doi":"10.1002/aenm.202402746","DOIUrl":null,"url":null,"abstract":"The significant interfacial resistance between solid electrolyte-electrode interfaces is a major bottleneck for the practical application of solid-state lithium batteries. This resistance is primarily caused by the formation of space charge layers (SCLs), resulting from the redistribution of ionic carriers at the interface between dissimilar materials with varying chemical potentials, which lead to insufficient carriers and sluggish lithium-ion transport. In this study, a conjugated structure polymer is constructed through in situ polymerization onto the oxide electrolyte, forming charge-rich SCLs on the organic/inorganic interface, and enabling the interfacial layer to maintain superior ion transfer and contact. The Li solid NMR spectra and computational study suggest that optimized SCLs offer effective pathways for Li<sup>+</sup> conduction in the electrolyte, thereby enhancing the interfacial conduction. Furthermore, the designed electrolyte induces the formation of an inorganic-rich interphase layer on the lithium anode, enabling rapid lithium-ion transport and uniform Li deposition. Consequently, the lithium symmetric cell with this electrolyte operates for more than 5100 h, while LiFePO<sub>4</sub>/Li solid-state batteries can stably cycle up to 800 times at 5 C. This interfacial modification strategy provides a new perspective for the rational design of the charge-rich SCLs and advances the understanding of the SCLs inside the electrolyte.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402746","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The significant interfacial resistance between solid electrolyte-electrode interfaces is a major bottleneck for the practical application of solid-state lithium batteries. This resistance is primarily caused by the formation of space charge layers (SCLs), resulting from the redistribution of ionic carriers at the interface between dissimilar materials with varying chemical potentials, which lead to insufficient carriers and sluggish lithium-ion transport. In this study, a conjugated structure polymer is constructed through in situ polymerization onto the oxide electrolyte, forming charge-rich SCLs on the organic/inorganic interface, and enabling the interfacial layer to maintain superior ion transfer and contact. The Li solid NMR spectra and computational study suggest that optimized SCLs offer effective pathways for Li+ conduction in the electrolyte, thereby enhancing the interfacial conduction. Furthermore, the designed electrolyte induces the formation of an inorganic-rich interphase layer on the lithium anode, enabling rapid lithium-ion transport and uniform Li deposition. Consequently, the lithium symmetric cell with this electrolyte operates for more than 5100 h, while LiFePO4/Li solid-state batteries can stably cycle up to 800 times at 5 C. This interfacial modification strategy provides a new perspective for the rational design of the charge-rich SCLs and advances the understanding of the SCLs inside the electrolyte.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过富电荷空间电荷层增强相间离子传输,实现超稳定固态锂金属电池
固态电解质-电极界面之间的巨大界面电阻是固态锂电池实际应用的主要瓶颈。这种阻力主要是由空间电荷层(SCL)的形成造成的,空间电荷层是离子载流子在化学势不同的异种材料界面上重新分布造成的,它导致载流子不足和锂离子传输迟缓。本研究通过原位聚合在氧化物电解质上构建共轭结构聚合物,在有机/无机界面上形成电荷丰富的 SCL,使界面层保持良好的离子传输和接触。锂固态核磁共振光谱和计算研究表明,优化的 SCL 为电解质中 Li+ 的传导提供了有效途径,从而增强了界面传导。此外,设计的电解质还能在锂阳极上形成富含无机物的相间层,从而实现快速的锂离子传输和均匀的锂沉积。因此,使用这种电解质的锂对称电池可工作 5100 小时以上,而 LiFePO4/Li 固态电池在 5 C 下可稳定循环 800 次。这种界面改性策略为合理设计富电荷 SCL 提供了新的视角,并推进了对电解质内部 SCL 的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Solvation Structure Dual-Regulator Enabled Multidimensional Improvement for Low-Temperature Potassium Ion Batteries Exploring Direct Electrochemical Fischer–Tropsch Chemistry of C1–C7 Hydrocarbons via Perimeter Engineering of Au–SrTiO3 Catalyst (Adv. Energy Mater. 36/2024) Sustainable Chitin-Derived 2D Nanosheets with Hierarchical Ion Transport for Osmotic Energy Harvesting (Adv. Energy Mater. 36/2024) Masthead: (Adv. Energy Mater. 36/2024) Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes (Adv. Energy Mater. 36/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1