IDAS: Intelligent Driving Assistance System Using RAG

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-08-21 DOI:10.1109/OJVT.2024.3447449
Luis-Bernardo Hernandez-Salinas;Juan Terven;E. A. Chavez-Urbiola;Diana-Margarita Córdova-Esparza;Julio-Alejandro Romero-González;Amadeo Arguelles;Ilse Cervantes
{"title":"IDAS: Intelligent Driving Assistance System Using RAG","authors":"Luis-Bernardo Hernandez-Salinas;Juan Terven;E. A. Chavez-Urbiola;Diana-Margarita Córdova-Esparza;Julio-Alejandro Romero-González;Amadeo Arguelles;Ilse Cervantes","doi":"10.1109/OJVT.2024.3447449","DOIUrl":null,"url":null,"abstract":"In the fast-growing automotive technology sector, it has become increasingly clear that there is a need for cars with smarter and more interactive systems. This article presents the Intelligent Driving Assistance System (IDAS), an artificial intelligence system that enables the driver to use voice commands to access various features of a car. The primary component of IDAS is a Large Language Model (LLM), which, through retrieval augmented generation (RAG), can efficiently read and understand the car manual for immediate context-based aid. In addition, this system incorporates speech recognition and speech synthesis capabilities, it can understand commands given in multiple languages, improving user experiences among diverse driver communities. Our results show a minimum response time of one second for the pipeline using GPT-4o-mini and Mistral Nemo.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"5 ","pages":"1139-1165"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643289/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the fast-growing automotive technology sector, it has become increasingly clear that there is a need for cars with smarter and more interactive systems. This article presents the Intelligent Driving Assistance System (IDAS), an artificial intelligence system that enables the driver to use voice commands to access various features of a car. The primary component of IDAS is a Large Language Model (LLM), which, through retrieval augmented generation (RAG), can efficiently read and understand the car manual for immediate context-based aid. In addition, this system incorporates speech recognition and speech synthesis capabilities, it can understand commands given in multiple languages, improving user experiences among diverse driver communities. Our results show a minimum response time of one second for the pipeline using GPT-4o-mini and Mistral Nemo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IDAS: 使用 RAG 的智能驾驶辅助系统
在快速发展的汽车技术领域,人们越来越清楚地认识到,汽车需要更智能、互动性更强的系统。本文介绍的智能驾驶辅助系统(IDAS)是一种人工智能系统,它能让驾驶员使用语音指令访问汽车的各种功能。IDAS 的主要组成部分是一个大语言模型(LLM),通过检索增强生成(RAG),它可以有效地阅读和理解汽车手册,从而提供基于上下文的即时帮助。此外,该系统还集成了语音识别和语音合成功能,可以理解多种语言的指令,从而改善不同驾驶员群体的用户体验。我们的结果表明,使用 GPT-4o-mini 和 Mistral Nemo 的管道响应时间最短为一秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Enhancing AAV-to-Ground Communication Security With the Proceed-Hover-Return (PHR) Approach OptiFlow: Optimizing Traffic Flow in ITS With Improved Cluster Routing Efficient Modeling of Interest Forwarding in Information Centric Vehicular Networks Multi-Agent Deep Reinforcement Learning Based Optimizing Joint 3D Trajectories and Phase Shifts in RIS-Assisted UAV-Enabled Wireless Communications Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1