Sarah K. Linden, Damien W. M. Arrigan* and Alexandra Yeung*,
{"title":"Student Engagement During an Experiment on the Bioelectrochemistry of Cytochrome c","authors":"Sarah K. Linden, Damien W. M. Arrigan* and Alexandra Yeung*, ","doi":"10.1021/acs.jchemed.3c0129610.1021/acs.jchemed.3c01296","DOIUrl":null,"url":null,"abstract":"<p >Learning about electrochemical protein science and technology is useful due to its importance in society, for example, in widely used glucose biosensors. The aim of the experiment presented here is to provide third-year undergraduate chemistry students with an introduction to the electrochemistry of cytochrome <i>c</i> as a first step in bioelectrochemistry. The experiment was designed with the learning outcomes of the Curtin University unit Bioanalytical and Biophysical Chemistry in mind. The effectiveness of this experiment was measured via a modified version of the Advancing Science by Enhancing Learning in the Laboratory (ASELL) Students Laboratory Experience (ASLE) survey. Comparisons of the students’ experimental data to model data were employed, as well as an analysis of the ability of students to use and learn with a portable potentiostat and its relevant software. In the survey results, 69% of students agreed/strongly agreed with the statement “I found this to be an interesting experiment”, and the remaining students (31%) responded “neutral”, indicating an overall positive student experience. The student responses to the main goals of this experiment (i.e., development of laboratory skills, increasing understanding of electrochemistry, and development of data interpretation skills) were very favorable (positive responses were garnered from 92%, 84%, and 85% of students for each respective goal). The results show that this experiment on the electrochemistry of cytochrome <i>c</i> provides a basis for introducing new experimental methods and skills to undergraduate chemistry students.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 9","pages":"3739–3749 3739–3749"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.3c01296","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Learning about electrochemical protein science and technology is useful due to its importance in society, for example, in widely used glucose biosensors. The aim of the experiment presented here is to provide third-year undergraduate chemistry students with an introduction to the electrochemistry of cytochrome c as a first step in bioelectrochemistry. The experiment was designed with the learning outcomes of the Curtin University unit Bioanalytical and Biophysical Chemistry in mind. The effectiveness of this experiment was measured via a modified version of the Advancing Science by Enhancing Learning in the Laboratory (ASELL) Students Laboratory Experience (ASLE) survey. Comparisons of the students’ experimental data to model data were employed, as well as an analysis of the ability of students to use and learn with a portable potentiostat and its relevant software. In the survey results, 69% of students agreed/strongly agreed with the statement “I found this to be an interesting experiment”, and the remaining students (31%) responded “neutral”, indicating an overall positive student experience. The student responses to the main goals of this experiment (i.e., development of laboratory skills, increasing understanding of electrochemistry, and development of data interpretation skills) were very favorable (positive responses were garnered from 92%, 84%, and 85% of students for each respective goal). The results show that this experiment on the electrochemistry of cytochrome c provides a basis for introducing new experimental methods and skills to undergraduate chemistry students.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.