Marcel Andree;Janusz Grzyb;Holger Rücker;Ullrich R. Pfeiffer
{"title":"Towards Passive Imaging With Uncooled, Low-NEP SiGe HBT Terahertz Direct Detectors","authors":"Marcel Andree;Janusz Grzyb;Holger Rücker;Ullrich R. Pfeiffer","doi":"10.1109/TTHZ.2024.3432619","DOIUrl":null,"url":null,"abstract":"This work focuses on a systematic analysis of the potential and limitations of modern SiGe HBT devices for broadband passive room-temperature detection in the lower THz range. Multiple necessary conditions need to be fulfilled to facilitate broadband passive imaging with a sufficiently low in-band NEP, which refer to various technology-driven device operation aspects, including the THz rectification process and low-frequency analysis. To properly understand and model the devices' internal parasitics in combination with antenna-detector co-design aspects, a simplified nonlinear high-frequency detector model was applied for the devices operating in the forward-active and saturation region (cold operation). The complete detector was implemented in a modern high-speed 130 nm SiGe HBT technology with \n<inline-formula><tex-math>$f_{t}/f_{\\text{max}}$</tex-math></inline-formula>\n of 470/650 GHz. It comprises two orthogonal polarization paths within a single dual-polarization lens-coupled on-chip antenna to operate with unpolarized passive illumination. Due to an efficient antenna-circuit co-design, a close-to-optimum detector performance in a near-THz fractional bandwidth was achieved, as experimentally verified in free-space measurements with frequency-tunable coherent CW sources. The detector optical NEP for each polarization path was measured across 200–1000 GHz reporting state-of-the-art values of 2.3–23 pW/\n<inline-formula><tex-math>$\\mathrm{\\sqrt{Hz}}$</tex-math></inline-formula>\n (forward-active) and 4.3–45 pW/\n<inline-formula><tex-math>$\\mathrm{\\sqrt{Hz}}$</tex-math></inline-formula>\n (saturation). This, combined with the de-embedded equivalent noise bandwidth of 512 GHz around 430 GHz, allowed to demonstrate a 1-Hz defined NETD of 0.86 K and 2 K with a focussed cavity black-body standard chopped mechanically at 1.5 kHz. By dual-channel operation, the NETD scaled down to 0.64 K, indicating near-zero noise correlation between both polarization paths.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 5","pages":"632-651"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10607950","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10607950/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on a systematic analysis of the potential and limitations of modern SiGe HBT devices for broadband passive room-temperature detection in the lower THz range. Multiple necessary conditions need to be fulfilled to facilitate broadband passive imaging with a sufficiently low in-band NEP, which refer to various technology-driven device operation aspects, including the THz rectification process and low-frequency analysis. To properly understand and model the devices' internal parasitics in combination with antenna-detector co-design aspects, a simplified nonlinear high-frequency detector model was applied for the devices operating in the forward-active and saturation region (cold operation). The complete detector was implemented in a modern high-speed 130 nm SiGe HBT technology with
$f_{t}/f_{\text{max}}$
of 470/650 GHz. It comprises two orthogonal polarization paths within a single dual-polarization lens-coupled on-chip antenna to operate with unpolarized passive illumination. Due to an efficient antenna-circuit co-design, a close-to-optimum detector performance in a near-THz fractional bandwidth was achieved, as experimentally verified in free-space measurements with frequency-tunable coherent CW sources. The detector optical NEP for each polarization path was measured across 200–1000 GHz reporting state-of-the-art values of 2.3–23 pW/
$\mathrm{\sqrt{Hz}}$
(forward-active) and 4.3–45 pW/
$\mathrm{\sqrt{Hz}}$
(saturation). This, combined with the de-embedded equivalent noise bandwidth of 512 GHz around 430 GHz, allowed to demonstrate a 1-Hz defined NETD of 0.86 K and 2 K with a focussed cavity black-body standard chopped mechanically at 1.5 kHz. By dual-channel operation, the NETD scaled down to 0.64 K, indicating near-zero noise correlation between both polarization paths.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.