Terahertz Extreme Skin-Depth Waveguides

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Terahertz Science and Technology Pub Date : 2024-06-21 DOI:10.1109/TTHZ.2024.3417234
Harrison Lees;Daniel Headland;Withawat Withayachumnankul
{"title":"Terahertz Extreme Skin-Depth Waveguides","authors":"Harrison Lees;Daniel Headland;Withawat Withayachumnankul","doi":"10.1109/TTHZ.2024.3417234","DOIUrl":null,"url":null,"abstract":"All-silicon substrateless waveguides have become a leading contender for terahertz device integration owing to their broad operating bandwidth and exceptional efficiency. However, without metallic confinement, these unshielded waveguides are susceptible to evanescent coupling, requiring that waveguides be placed sparsely to resist unwanted interactions. This sparsity remains a critical obstacle to compact devices and integrated systems. To counter this, we demonstrate substrateless extreme skin-depth waveguides, utilizing a self-supporting anisotropic cladding that markedly reduces the evanescent field penetration into the surrounding cladding, and hence, suppresses cross coupling between waveguides. Here, we achieve 20-dB cross-talk suppression across the WR3.4 band, 220–330 GHz, a 40% fractional bandwidth, with less than 0.5 free-space wavelength separations and coupling lengths exceeding ten free-space wavelengths. In addition, we exploit the low bending loss of this waveguide to realize an efficient and simply designable power divider to realize arbitrary extinction ratios between 1:1 and 10:1. Integrable with existing all-silicon devices, we foresee these techniques enabling the dense integration of terahertz systems with substrateless silicon waveguides.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 5","pages":"758-767"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568380/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

All-silicon substrateless waveguides have become a leading contender for terahertz device integration owing to their broad operating bandwidth and exceptional efficiency. However, without metallic confinement, these unshielded waveguides are susceptible to evanescent coupling, requiring that waveguides be placed sparsely to resist unwanted interactions. This sparsity remains a critical obstacle to compact devices and integrated systems. To counter this, we demonstrate substrateless extreme skin-depth waveguides, utilizing a self-supporting anisotropic cladding that markedly reduces the evanescent field penetration into the surrounding cladding, and hence, suppresses cross coupling between waveguides. Here, we achieve 20-dB cross-talk suppression across the WR3.4 band, 220–330 GHz, a 40% fractional bandwidth, with less than 0.5 free-space wavelength separations and coupling lengths exceeding ten free-space wavelengths. In addition, we exploit the low bending loss of this waveguide to realize an efficient and simply designable power divider to realize arbitrary extinction ratios between 1:1 and 10:1. Integrable with existing all-silicon devices, we foresee these techniques enabling the dense integration of terahertz systems with substrateless silicon waveguides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹极肤深波导
全硅无基底波导因其宽广的工作带宽和卓越的效率,已成为太赫兹器件集成的主要竞争者。然而,由于没有金属约束,这些无屏蔽波导很容易受到蒸发耦合的影响,这就要求波导放置得稀疏一些,以抵御不必要的相互作用。这种稀疏性仍然是紧凑型器件和集成系统的一个关键障碍。为了解决这个问题,我们展示了无基底的极皮深波导,利用自支撑各向异性包层显著降低了各向异性场对周围包层的穿透,从而抑制了波导之间的交叉耦合。在这里,我们在 220-330 GHz 的 WR3.4 波段实现了 20 分贝的串扰抑制,分数带宽为 40%,自由空间波长间隔小于 0.5,耦合长度超过 10 个自由空间波长。此外,我们还利用这种波导的低弯曲损耗实现了一种高效、设计简单的功率分配器,可实现 1:1 到 10:1 之间的任意消光比。我们预计,这些技术可与现有的全硅器件集成,实现太赫兹系统与无基底硅波导的密集集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
期刊最新文献
2024 Index IEEE Transactions on Terahertz Science and Technology Vol. 14 Table of Contents IEEE Transactions on Terahertz Science and Technology Information for Authors IEEE Open Access Publishing IEEE Microwave Theory and Techniques Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1