Xiaojian Duan, Chao Shen, Guozheng Chen, Xi Deng, Phil Jones
{"title":"Investigation of Indoor Airborne Bacteria in the Severe Cold Region in China: Genera, Levels, and the Influencing Factors of Concentration","authors":"Xiaojian Duan, Chao Shen, Guozheng Chen, Xi Deng, Phil Jones","doi":"10.1155/2024/8813703","DOIUrl":null,"url":null,"abstract":"<p>In regions experiencing severe cold, inadequate ventilation during winter months often leads to increased concentrations of indoor pollutants. While there have been several studies on indoor particulate matter and inorganic pollutants in such regions, bioaerosol pollution has not been as extensively investigated. This study examines the indoor bioaerosol situation in a university located in one of the severe cold regions in China, focusing on bacteria as a representative pollutant. It investigated random samples of an office and a dormitory (including washrooms) and spanned heating and nonheating periods. The findings indicated that bacterial abundance in the dormitory and office was approximately equivalent. The predominant airborne bacterial communities identified were Proteobacteria, Bacteroidota, Actinobacteriota, Firmicutes, and Myxococcota. Opening windows effectively reduced bacterial concentrations during both heating and nonheating periods. When windows remained closed, bacterial concentrations exceeded the standard by 9.1% during the nonheating period and by 14.3% during the heating period. Furthermore, temperature and relative humidity influenced bacterial particle size, activity, and consequently, aerosol concentrations. In the office, the highest percentage of bioaerosols was observed in particle sizes <1.1 and 1.1–2.1 <i>μ</i>m, with smaller percentages observed in other particle sizes. Conversely, the percentage of particle sizes 2.1–3.3 <i>μ</i>m in the dormitory was higher. The highest bacterial aerosol concentrations were detected in the morning in both the dormitory and office, during heating and nonheating periods. Bacterial concentrations in the office were lower on weekends than on weekdays, whereas in the dormitory, concentrations were higher on weekends than on weekdays. The above results indicate that indoor bacterial aerosol pollution is serious in winter in severe cold regions, which needs more attention.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8813703","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8813703","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In regions experiencing severe cold, inadequate ventilation during winter months often leads to increased concentrations of indoor pollutants. While there have been several studies on indoor particulate matter and inorganic pollutants in such regions, bioaerosol pollution has not been as extensively investigated. This study examines the indoor bioaerosol situation in a university located in one of the severe cold regions in China, focusing on bacteria as a representative pollutant. It investigated random samples of an office and a dormitory (including washrooms) and spanned heating and nonheating periods. The findings indicated that bacterial abundance in the dormitory and office was approximately equivalent. The predominant airborne bacterial communities identified were Proteobacteria, Bacteroidota, Actinobacteriota, Firmicutes, and Myxococcota. Opening windows effectively reduced bacterial concentrations during both heating and nonheating periods. When windows remained closed, bacterial concentrations exceeded the standard by 9.1% during the nonheating period and by 14.3% during the heating period. Furthermore, temperature and relative humidity influenced bacterial particle size, activity, and consequently, aerosol concentrations. In the office, the highest percentage of bioaerosols was observed in particle sizes <1.1 and 1.1–2.1 μm, with smaller percentages observed in other particle sizes. Conversely, the percentage of particle sizes 2.1–3.3 μm in the dormitory was higher. The highest bacterial aerosol concentrations were detected in the morning in both the dormitory and office, during heating and nonheating periods. Bacterial concentrations in the office were lower on weekends than on weekdays, whereas in the dormitory, concentrations were higher on weekends than on weekdays. The above results indicate that indoor bacterial aerosol pollution is serious in winter in severe cold regions, which needs more attention.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.