Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2024-10-26 DOI:10.1155/2024/2456666
Jesús Llanos-Jiménez, Rafael Suárez, Alicia Alonso, Juan José Sendra
{"title":"Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic","authors":"Jesús Llanos-Jiménez,&nbsp;Rafael Suárez,&nbsp;Alicia Alonso,&nbsp;Juan José Sendra","doi":"10.1155/2024/2456666","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO<sub>2</sub>, PM2.5, PM10, and CH<sub>2</sub>O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO<sub>2</sub> and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2456666","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2456666","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO2, PM2.5, PM10, and CH2O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO2 and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客观和主观室内空气质量及热舒适度指数:COVID-19大流行后地中海气候典型学校的特征描述
COVID-19 大流行促使人们重新关注室内空气质量 (IAQ)。不良的通风习惯、能源陈旧、学校缺乏制冷设备,再加上气候变化导致气温升高,这些都导致教室出现热应力。在 COVID 大流行之后,学校运营发生了变化,因此有必要准确了解当前的情况。本研究以西班牙南部 5 个地中海气候区的 7 所典型中学为样本,对疫情发生后的冬季和夏季室内空气质量和热舒适度(TC)进行了评估。室内空气质量通过 CO2、PM2.5、PM10 和 CH2O 进行评估,热舒适度则采用静态和自适应模型。同时还使用了调查来评估这两项指标。主要的新颖之处在于使用 IAPI(室内空气污染指数)和 IDI(室内不满意度指数)这两个客观的全球无量纲指数来优化这两个变量的联合评估。在两个季节和所有气候变量中,室内空气质量的客观结果都不理想,尤其是二氧化碳和 PM2.5。全球 IAPI 在 6.2 至 8.1 之间,指数达到 10 则被认为是不可接受的,而超过既定限值的时间百分比在冬季(从 7% 至 31.9% 不等)比夏季(从 14.3% 至 20.9% 不等)变化更大。由于最热地区的过热,夏季超出舒适度范围的时间百分比达到 40%-47%。58.3%的用户报告了这种不适感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic Indoor Air Quality: Predicting and Comparing Protective Behaviors in Germany and Portugal Holographic Air-Quality Monitor (HAM) Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1