Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic
Jesús Llanos-Jiménez, Rafael Suárez, Alicia Alonso, Juan José Sendra
{"title":"Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic","authors":"Jesús Llanos-Jiménez, Rafael Suárez, Alicia Alonso, Juan José Sendra","doi":"10.1155/2024/2456666","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO<sub>2</sub>, PM2.5, PM10, and CH<sub>2</sub>O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO<sub>2</sub> and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2456666","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2456666","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO2, PM2.5, PM10, and CH2O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO2 and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.