Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-09-09 DOI:10.1038/s41528-024-00346-8
Huimin He, Yaqing Chen, Aoyang Pu, Li Wang, Wenxiu Li, Xiaoyu Zhou, Chuyang Y. Tang, Kiwon Ban, Mengsu Yang, Lizhi Xu
{"title":"Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes","authors":"Huimin He, Yaqing Chen, Aoyang Pu, Li Wang, Wenxiu Li, Xiaoyu Zhou, Chuyang Y. Tang, Kiwon Ban, Mengsu Yang, Lizhi Xu","doi":"10.1038/s41528-024-00346-8","DOIUrl":null,"url":null,"abstract":"Flexible devices, such as soft bioelectronics and stretchable supercapacitors, have their practical performance limited by electrodes which are desired to have high conductivity and capacitance, outstanding mechanical flexibility and strength, great electrochemical stability, and good biocompatibility. Here, we report a simple and efficient method to synthesize a nanostructured conductive hydrogel to meet such criteria. Specifically, templated by a hyperconnective nanofibrous network from aramid hydrogels, the conducting polymer, polypyrrole, assembles conformally onto nanofibers through in-situ polymerization, generating continuous nanostructured conductive pathways. The resulting conductive hydrogel shows superior conductivity (72 S cm−1) and fracture strength (27.2 MPa). Supercapacitor electrodes utilizing this hydrogel exhibit high specific capacitance (240 F g−1) and cyclic stability. Furthermore, bioelectrodes of patterned hydrogels provide favorable bioelectronic interfaces, allowing high-quality electrophysiological recording and stimulation in physiological environments. These high-performance electrodes are readily scalable to applications of energy and power systems, healthcare and medical technologies, smart textiles, and so forth.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00346-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00346-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible devices, such as soft bioelectronics and stretchable supercapacitors, have their practical performance limited by electrodes which are desired to have high conductivity and capacitance, outstanding mechanical flexibility and strength, great electrochemical stability, and good biocompatibility. Here, we report a simple and efficient method to synthesize a nanostructured conductive hydrogel to meet such criteria. Specifically, templated by a hyperconnective nanofibrous network from aramid hydrogels, the conducting polymer, polypyrrole, assembles conformally onto nanofibers through in-situ polymerization, generating continuous nanostructured conductive pathways. The resulting conductive hydrogel shows superior conductivity (72 S cm−1) and fracture strength (27.2 MPa). Supercapacitor electrodes utilizing this hydrogel exhibit high specific capacitance (240 F g−1) and cyclic stability. Furthermore, bioelectrodes of patterned hydrogels provide favorable bioelectronic interfaces, allowing high-quality electrophysiological recording and stimulation in physiological environments. These high-performance electrodes are readily scalable to applications of energy and power systems, healthcare and medical technologies, smart textiles, and so forth.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有全聚合物纳米纤维网络的高导电性强水凝胶可用作高电容柔性电极
软生物电子学和可拉伸超级电容器等柔性设备的实用性能受到电极的限制,电极需要具有高导电性和电容、出色的机械柔韧性和强度、高电化学稳定性和良好的生物相容性。在此,我们报告了一种简单高效的方法来合成符合上述标准的纳米结构导电水凝胶。具体来说,以芳纶水凝胶的超连接纳米纤维网为模板,导电聚合物聚吡咯通过原位聚合作用顺应性地组装到纳米纤维上,产生连续的纳米结构导电通路。由此产生的导电水凝胶显示出卓越的导电性(72 S cm-1)和断裂强度(27.2 兆帕)。使用这种水凝胶的超级电容器电极具有很高的比电容(240 F g-1)和循环稳定性。此外,图案化水凝胶生物电极提供了有利的生物电子界面,可在生理环境中进行高质量的电生理记录和刺激。这些高性能电极可随时扩展到能源和电力系统、保健和医疗技术、智能纺织品等应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Combustion-assisted low-temperature ZrO2/SnO2 films for high-performance flexible thin film transistors Analytic modeling and validation of strain in textile-based OLEDs for advanced textile display technologies Fully biodegradable electrochromic display for disposable patch Strain-dependent charge trapping and its impact on the operational stability of polymer field-effect transistors Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1