On chip control and detection of complex SPP and waveguide modes based on plasmonic interconnect circuits

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2024-09-09 DOI:10.1515/nanoph-2024-0298
Canran Zhang, Yijing Xu, Hui Tao, Pan Wang, Yunkang Cui, Qilong Wang
{"title":"On chip control and detection of complex SPP and waveguide modes based on plasmonic interconnect circuits","authors":"Canran Zhang, Yijing Xu, Hui Tao, Pan Wang, Yunkang Cui, Qilong Wang","doi":"10.1515/nanoph-2024-0298","DOIUrl":null,"url":null,"abstract":"Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion. We optimized the coupling gratings to fine-tune transmission modes around specific near-infrared wavelengths for effective electrical detection. Simulation results align with experimental data, confirming the device’s ability to detect complex optical modes. This advancement broadens the applications of plasmonic interconnects in high-speed, compact optoelectronic and sensor technologies, enabling more versatile nanoscale optical signal processing and transmission.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"22 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0298","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion. We optimized the coupling gratings to fine-tune transmission modes around specific near-infrared wavelengths for effective electrical detection. Simulation results align with experimental data, confirming the device’s ability to detect complex optical modes. This advancement broadens the applications of plasmonic interconnects in high-speed, compact optoelectronic and sensor technologies, enabling more versatile nanoscale optical signal processing and transmission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于等离子体互连电路的复杂 SPP 和波导模式的片上控制与检测
利用表面等离子体模式的光互连正在彻底改变高性能计算和人工智能,克服了电气互连在速度、能效和微型化方面的局限性。这些纳米级光子电路集成了片上光操纵和信号转换功能,标志着光电子学和数据处理效率的重大进步。在这里,我们提出了一种新型等离子体互连电路,通过引入折射率匹配层,该器件同时支持纯 SPP 和不同的混合模式,可根据光波长和偏振选择性地激发和传输,然后进行光电流转换。我们对耦合光栅进行了优化,以微调特定近红外波长附近的传输模式,从而实现有效的电学检测。仿真结果与实验数据一致,证实了该装置探测复杂光学模式的能力。这一进展拓宽了等离子体互连在高速、紧凑型光电和传感器技术中的应用,实现了更多功能的纳米级光信号处理和传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
Constant-force photonic projectile for long-distance targeting delivery Impact of temperature on the brightening of neutral and charged dark excitons in WSe2 monolayer An overview on plasmon-enhanced photoluminescence via metallic nanoantennas Plasmon-driven molecular scission Enhanced zero-phonon line emission from an ensemble of W centers in circular and bowtie Bragg grating cavities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1