Cheehoon Ahn, Tao Zhang, Gayoung Yang, Thomas Rode, Pallavi Varshney, Sophia J. Ghayur, Olivia K. Chugh, Hui Jiang, Jeffrey F. Horowitz
{"title":"Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity","authors":"Cheehoon Ahn, Tao Zhang, Gayoung Yang, Thomas Rode, Pallavi Varshney, Sophia J. Ghayur, Olivia K. Chugh, Hui Jiang, Jeffrey F. Horowitz","doi":"10.1038/s42255-024-01103-x","DOIUrl":null,"url":null,"abstract":"Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health. Adults with overweight or obesity who exercise regularly for at least 2 years exhibit distinct structural and proteomic characteristics in abdominal subcutaneous adipose tissue that may contribute to better cardiometabolic health outcomes.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 9","pages":"1819-1836"},"PeriodicalIF":18.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-024-01103-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health. Adults with overweight or obesity who exercise regularly for at least 2 years exhibit distinct structural and proteomic characteristics in abdominal subcutaneous adipose tissue that may contribute to better cardiometabolic health outcomes.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.