Toward Semantically-Consistent Deformable 2D-3D Registration for 3D Craniofacial Structure Estimation From a Single-View Lateral Cephalometric Radiograph

Yikun Jiang;Yuru Pei;Tianmin Xu;Xiaoru Yuan;Hongbin Zha
{"title":"Toward Semantically-Consistent Deformable 2D-3D Registration for 3D Craniofacial Structure Estimation From a Single-View Lateral Cephalometric Radiograph","authors":"Yikun Jiang;Yuru Pei;Tianmin Xu;Xiaoru Yuan;Hongbin Zha","doi":"10.1109/TMI.2024.3456251","DOIUrl":null,"url":null,"abstract":"The deep neural networks combined with the statistical shape model have enabled efficient deformable 2D-3D registration and recovery of 3D anatomical structures from a single radiograph. However, the recovered volumetric image tends to lack the volumetric fidelity of fine-grained anatomical structures and explicit consideration of cross-dimensional semantic correspondence. In this paper, we introduce a simple but effective solution for semantically-consistent deformable 2D-3D registration and detailed volumetric image recovery by inferring a voxel-wise registration field between the cone-beam computed tomography and a single lateral cephalometric radiograph (LC). The key idea is to refine the initial statistical model-based registration field with craniofacial structural details and semantic consistency from the LC. Specifically, our framework employs a self-supervised scheme to learn a voxel-level refiner of registration fields to provide fine-grained craniofacial structural details and volumetric fidelity. We also present a weakly supervised semantic consistency measure for semantic correspondence, relieving the requirements of volumetric image collections and annotations. Experiments showcase that our method achieves deformable 2D-3D registration with performance gains over state-of-the-art registration and radiograph-based volumetric reconstruction methods. The source code is available at <uri>https://github.com/Jyk-122/SC-DREG</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"685-697"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669588/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The deep neural networks combined with the statistical shape model have enabled efficient deformable 2D-3D registration and recovery of 3D anatomical structures from a single radiograph. However, the recovered volumetric image tends to lack the volumetric fidelity of fine-grained anatomical structures and explicit consideration of cross-dimensional semantic correspondence. In this paper, we introduce a simple but effective solution for semantically-consistent deformable 2D-3D registration and detailed volumetric image recovery by inferring a voxel-wise registration field between the cone-beam computed tomography and a single lateral cephalometric radiograph (LC). The key idea is to refine the initial statistical model-based registration field with craniofacial structural details and semantic consistency from the LC. Specifically, our framework employs a self-supervised scheme to learn a voxel-level refiner of registration fields to provide fine-grained craniofacial structural details and volumetric fidelity. We also present a weakly supervised semantic consistency measure for semantic correspondence, relieving the requirements of volumetric image collections and annotations. Experiments showcase that our method achieves deformable 2D-3D registration with performance gains over state-of-the-art registration and radiograph-based volumetric reconstruction methods. The source code is available at https://github.com/Jyk-122/SC-DREG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现语义一致的可变形 2D-3D 注册,根据单视角头侧 X 光片进行三维颅面结构估算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1