Toward Semantically-Consistent Deformable 2D-3D Registration for 3D Craniofacial Structure Estimation From a Single-View Lateral Cephalometric Radiograph
{"title":"Toward Semantically-Consistent Deformable 2D-3D Registration for 3D Craniofacial Structure Estimation From a Single-View Lateral Cephalometric Radiograph","authors":"Yikun Jiang;Yuru Pei;Tianmin Xu;Xiaoru Yuan;Hongbin Zha","doi":"10.1109/TMI.2024.3456251","DOIUrl":null,"url":null,"abstract":"The deep neural networks combined with the statistical shape model have enabled efficient deformable 2D-3D registration and recovery of 3D anatomical structures from a single radiograph. However, the recovered volumetric image tends to lack the volumetric fidelity of fine-grained anatomical structures and explicit consideration of cross-dimensional semantic correspondence. In this paper, we introduce a simple but effective solution for semantically-consistent deformable 2D-3D registration and detailed volumetric image recovery by inferring a voxel-wise registration field between the cone-beam computed tomography and a single lateral cephalometric radiograph (LC). The key idea is to refine the initial statistical model-based registration field with craniofacial structural details and semantic consistency from the LC. Specifically, our framework employs a self-supervised scheme to learn a voxel-level refiner of registration fields to provide fine-grained craniofacial structural details and volumetric fidelity. We also present a weakly supervised semantic consistency measure for semantic correspondence, relieving the requirements of volumetric image collections and annotations. Experiments showcase that our method achieves deformable 2D-3D registration with performance gains over state-of-the-art registration and radiograph-based volumetric reconstruction methods. The source code is available at <uri>https://github.com/Jyk-122/SC-DREG</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"685-697"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669588/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The deep neural networks combined with the statistical shape model have enabled efficient deformable 2D-3D registration and recovery of 3D anatomical structures from a single radiograph. However, the recovered volumetric image tends to lack the volumetric fidelity of fine-grained anatomical structures and explicit consideration of cross-dimensional semantic correspondence. In this paper, we introduce a simple but effective solution for semantically-consistent deformable 2D-3D registration and detailed volumetric image recovery by inferring a voxel-wise registration field between the cone-beam computed tomography and a single lateral cephalometric radiograph (LC). The key idea is to refine the initial statistical model-based registration field with craniofacial structural details and semantic consistency from the LC. Specifically, our framework employs a self-supervised scheme to learn a voxel-level refiner of registration fields to provide fine-grained craniofacial structural details and volumetric fidelity. We also present a weakly supervised semantic consistency measure for semantic correspondence, relieving the requirements of volumetric image collections and annotations. Experiments showcase that our method achieves deformable 2D-3D registration with performance gains over state-of-the-art registration and radiograph-based volumetric reconstruction methods. The source code is available at https://github.com/Jyk-122/SC-DREG.