Full-Wave Image Reconstruction in Transcranial Photoacoustic Computed Tomography Using a Finite Element Method

Yilin Luo;Hsuan-Kai Huang;Karteekeya Sastry;Peng Hu;Xin Tong;Joseph Kuo;Yousuf Aborahama;Shuai Na;Umberto Villa;Mark. A. Anastasio;Lihong V. Wang
{"title":"Full-Wave Image Reconstruction in Transcranial Photoacoustic Computed Tomography Using a Finite Element Method","authors":"Yilin Luo;Hsuan-Kai Huang;Karteekeya Sastry;Peng Hu;Xin Tong;Joseph Kuo;Yousuf Aborahama;Shuai Na;Umberto Villa;Mark. A. Anastasio;Lihong V. Wang","doi":"10.1109/TMI.2024.3456595","DOIUrl":null,"url":null,"abstract":"Transcranial photoacoustic computed tomography presents challenges in human brain imaging due to skull-induced acoustic aberration. Existing full-wave image reconstruction methods rely on a unified elastic wave equa- tion for skull shear and longitudinal wave propagation, therefore demanding substantial computational resources. We propose an efficient discrete imaging model based on finite element discretization. The elastic wave equation for solids is solely applied to the hard-tissue skull region, while the soft-tissue or coupling-medium region that dominates the simulation domain is modeled with the simpler acoustic wave equation for liquids. The solid-liquid interfaces are explicitly modeled with elastic-acoustic coupling. Furthermore, finite element discretization allows coarser, irregular meshes to conform to object geometry. These factors significantly reduce the linear system size by 20 times to facilitate accurate whole-brain simulations with improved speed. We derive a matched forward-adjoint operator pair based on the model to enable integration with various optimization algorithms. We validate the reconstruction framework through numerical simulations and phantom experiments.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"645-655"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669935/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial photoacoustic computed tomography presents challenges in human brain imaging due to skull-induced acoustic aberration. Existing full-wave image reconstruction methods rely on a unified elastic wave equa- tion for skull shear and longitudinal wave propagation, therefore demanding substantial computational resources. We propose an efficient discrete imaging model based on finite element discretization. The elastic wave equation for solids is solely applied to the hard-tissue skull region, while the soft-tissue or coupling-medium region that dominates the simulation domain is modeled with the simpler acoustic wave equation for liquids. The solid-liquid interfaces are explicitly modeled with elastic-acoustic coupling. Furthermore, finite element discretization allows coarser, irregular meshes to conform to object geometry. These factors significantly reduce the linear system size by 20 times to facilitate accurate whole-brain simulations with improved speed. We derive a matched forward-adjoint operator pair based on the model to enable integration with various optimization algorithms. We validate the reconstruction framework through numerical simulations and phantom experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用有限元法重建经颅光声计算机断层扫描的全波图像
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1