{"title":"Ni-Catalyzed Deoxygenative Cross-Coupling of Alcohols with Aryl Chlorides via an Organic Photoredox Process","authors":"Weikang Xiong, Tengfei Kang, Fei Li, Huijuan Liao, Yonggang Yan, Jianyang Dong, Gang Li, Dong Xue","doi":"10.1021/acscatal.4c03909","DOIUrl":null,"url":null,"abstract":"Cross-electrophile coupling from naturally abundant materials is of significant value in organic synthesis. Herein, we established a highly efficient deoxygenative cross-coupling reaction using alcohols and industrial preferred aryl chlorides as coupling partners by the merging of photoredox and nickel catalysis with diaryl ketone as a photocatalyst. This methodology features a broad substrate scope and high functional group tolerance, with straightforward application of scale-up synthesis and late-stage modification of structurally complex natural products and pharmaceuticals, including C-4 alkylated pyridines. This protocol most likely proceeds via a HAT and β-scission process to form alkyl radicals from benzoxazolium salt-alcohol adducts.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03909","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-electrophile coupling from naturally abundant materials is of significant value in organic synthesis. Herein, we established a highly efficient deoxygenative cross-coupling reaction using alcohols and industrial preferred aryl chlorides as coupling partners by the merging of photoredox and nickel catalysis with diaryl ketone as a photocatalyst. This methodology features a broad substrate scope and high functional group tolerance, with straightforward application of scale-up synthesis and late-stage modification of structurally complex natural products and pharmaceuticals, including C-4 alkylated pyridines. This protocol most likely proceeds via a HAT and β-scission process to form alkyl radicals from benzoxazolium salt-alcohol adducts.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.