Optical atompilz: Propagation-invariant strongly longitudinally polarized toroidal pulses

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-09-09 DOI:10.1063/5.0218686
Ren Wang, Ding-Tao Yang, Tao Xin, Shuai Shi, Bing-Zhong Wang, Yijie Shen
{"title":"Optical atompilz: Propagation-invariant strongly longitudinally polarized toroidal pulses","authors":"Ren Wang, Ding-Tao Yang, Tao Xin, Shuai Shi, Bing-Zhong Wang, Yijie Shen","doi":"10.1063/5.0218686","DOIUrl":null,"url":null,"abstract":"Recent advancements in optical, terahertz, and microwave systems have unveiled non-transverse optical toroidal pulses characterized by skyrmionic topologies, fractal-like singularities, space-time nonseparability, and anapole-exciting ability. Despite this, the longitudinally polarized fields of canonical toroidal pulses notably lag behind their transverse counterparts in magnitude. Interestingly, although mushroom-cloud-like toroidal vortices with strong longitudinal fields are common in nature, they remain unexplored in the realm of electromagnetics. Here, we present strongly longitudinally polarized toroidal pulses (SLPTPs), which boast a longitudinal component amplitude exceeding that of the transverse component by over tenfold. This unique polarization property endows SLPTPs with robust propagation characteristics, showcasing nondiffracting behavior. The propagation-invariant strongly longitudinally polarized field holds promise for pioneering light–matter interactions, far-field superresolution microscopy, and high-capacity wireless communication utilizing three polarizations.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0218686","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in optical, terahertz, and microwave systems have unveiled non-transverse optical toroidal pulses characterized by skyrmionic topologies, fractal-like singularities, space-time nonseparability, and anapole-exciting ability. Despite this, the longitudinally polarized fields of canonical toroidal pulses notably lag behind their transverse counterparts in magnitude. Interestingly, although mushroom-cloud-like toroidal vortices with strong longitudinal fields are common in nature, they remain unexplored in the realm of electromagnetics. Here, we present strongly longitudinally polarized toroidal pulses (SLPTPs), which boast a longitudinal component amplitude exceeding that of the transverse component by over tenfold. This unique polarization property endows SLPTPs with robust propagation characteristics, showcasing nondiffracting behavior. The propagation-invariant strongly longitudinally polarized field holds promise for pioneering light–matter interactions, far-field superresolution microscopy, and high-capacity wireless communication utilizing three polarizations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学atompilz:传播不变的强纵向极化环形脉冲
光学、太赫兹和微波系统的最新进展揭示了非横向光学环形脉冲,其特点是具有天体拓扑结构、分形奇异性、时空不可分离性和无极激发能力。尽管如此,典型环状脉冲的纵向极化场在幅度上明显落后于横向脉冲。有趣的是,虽然具有强纵向场的蘑菇云状环形涡旋在自然界中很常见,但在电磁学领域却仍未被探索。在这里,我们展示了强纵向极化环形脉冲(SLPTPs),它的纵向分量振幅超过横向分量的十倍以上。这种独特的极化特性赋予了 SLPTPs 强大的传播特性,展示了非衍射行为。传播不变的强纵向偏振场有望开创光物质相互作用、远场超分辨率显微镜和利用三种偏振的大容量无线通信的先河。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Magnetic heating of interacting nanoparticles under different driving field waveforms Impact of Al profile in high-Al content AlGaN/GaN HEMTs on the 2DEG properties Statistical features of the response of a superconducting hot-electron bolometer to extremely weak terahertz pulses of picosecond and nanosecond duration 300-nm-thick, ultralow-loss silicon nitride photonic integrated circuits by 8-in. foundry production ScAlInN/GaN heterostructures grown by molecular beam epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1