Device Simulation of 25.9% Efficient ZnO x N y ${\rm ZnO}_x{\rm N}_y$ /Si Tandem Solar Cell

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-09-10 DOI:10.1002/adts.202400252
Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum
{"title":"Device Simulation of 25.9% Efficient \n \n \n \n ZnO\n x\n \n \n N\n y\n \n \n ${\\rm ZnO}_x{\\rm N}_y$\n /Si Tandem Solar Cell","authors":"Ingvild Bergsbak,&nbsp;Ørnulf Nordseth,&nbsp;Kjetil K. Saxegaard,&nbsp;Vegard S. Olsen,&nbsp;Holger von Wenckstern,&nbsp;Kristin Bergum","doi":"10.1002/adts.202400252","DOIUrl":null,"url":null,"abstract":"<p>The novel, high electron mobility material <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> can attain sufficiently low carrier concentration to enable <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mi>n</mi>\n </mrow>\n <annotation>$pn$</annotation>\n </semantics></math>-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> layer, the tandem cell consists of a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cu</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation>${\\rm Cu}_2{\\rm O}$</annotation>\n </semantics></math> emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>F</mi>\n </mrow>\n <annotation>$FF$</annotation>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> in a tandem solar cell. The dependence of current–voltage (<span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>) characteristics on thickness, mobility and carrier concentration in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> layer is evaluated, and found to yield maximum performance with 0.35 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$\\umu {\\rm m}$</annotation>\n </semantics></math>, 250 <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\rm cm}^2$</annotation>\n </semantics></math> Vs<sup>–1</sup> and <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>16</mn>\n </msup>\n <annotation>$10^{16}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <annotation>${\\rm cm}^{-3}$</annotation>\n </semantics></math>, respectively. Using these conditions, the <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> parameters of the device under AM1.5 illumination are short circuit current density, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mi>S</mi>\n <mi>C</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>17.76</mn>\n </mrow>\n <annotation>$J_{SC}=17.76$</annotation>\n </semantics></math> mA <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <annotation>${\\mathrm{cm}}^{-2}$</annotation>\n </semantics></math>, open circuit voltage, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mrow>\n <mi>O</mi>\n <mi>C</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>1.74</mn>\n </mrow>\n <annotation>$V_{OC}=1.74$</annotation>\n </semantics></math> V, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>F</mi>\n <mo>=</mo>\n <mn>83.8</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$FF=83.8\\%$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>PCE</mi>\n <mspace></mspace>\n <mo>=</mo>\n <mn>25.9</mn>\n <mo>%</mo>\n </mrow>\n <annotation>${\\rm PCE}\\,=25.9\\%$</annotation>\n </semantics></math>. With this, it is reported on, to the best of the knowledge, the first device simulation based on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math>.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202400252","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adts.202400252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The novel, high electron mobility material ZnO x N y ${\rm ZnO}_x{\rm N}_y$ has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, ZnO x N y ${\rm ZnO}_x{\rm N}_y$ can attain sufficiently low carrier concentration to enable p n $pn$ -junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer, the tandem cell consists of a Cu 2 O ${\rm Cu}_2{\rm O}$ emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, F F $FF$ . A ZnO x N y ${\rm ZnO}_x{\rm N}_y$ buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of ZnO x N y ${\rm ZnO}_x{\rm N}_y$ in a tandem solar cell. The dependence of current–voltage ( J $J$ V $V$ ) characteristics on thickness, mobility and carrier concentration in the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer is evaluated, and found to yield maximum performance with 0.35 μ m $\umu {\rm m}$ , 250 cm 2 ${\rm cm}^2$ Vs–1 and 10 16 $10^{16}$ cm 3 ${\rm cm}^{-3}$ , respectively. Using these conditions, the J $J$ V $V$ parameters of the device under AM1.5 illumination are short circuit current density, J S C = 17.76 $J_{SC}=17.76$ mA cm 2 ${\mathrm{cm}}^{-2}$ , open circuit voltage, V O C = 1.74 $V_{OC}=1.74$ V, F F = 83.8 % $FF=83.8\%$ and PCE = 25.9 % ${\rm PCE}\,=25.9\%$ . With this, it is reported on, to the best of the knowledge, the first device simulation based on ZnO x N y ${\rm ZnO}_x{\rm N}_y$ .

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
25.9% 高效 ZnOxNy/Si 串联太阳能电池的器件模拟
我们从理论上研究了新型高电子迁移率材料 ZnOxNy$\{rm ZnO}_x\{rm N}_y$,将其用作双端串联太阳能电池的吸收剂。除了高迁移率之外,ZnOxNy${rm ZnO}_x{rm N}_y$ 还能达到足够低的载流子浓度,从而实现 pn$pn$ 结,并且在 1.7 eV 范围内具有可调带隙。因此,它适合与硅基底部电池配对使用。除了 ZnOxNy${\rm ZnO}_x{\rm N}_y$ 层之外,串联电池还包括一个 Cu2O${\rm Cu}_2{\rm O}$ 发射器和一个硅异质结底部电池。在顶部电池的发射器和吸收器之间引入了缓冲层,以调节导致填充因子 FF$FF$ 较低的较大价带偏移。缓冲层带隙为 1.5 eV 的 ZnOxNy${rm ZnO}_x{rm N}_y$ 具有最高的功率转换效率 (PCE)。研究的目的是估算 ZnOxNy${rm ZnO}_x{rm N}_y$ 在串联太阳能电池中的最佳性能。评估了电流-电压(J$J$-V$V$)特性对 ZnOxNy${rm ZnO}_x{rm N}_y$ 层的厚度、迁移率和载流子浓度的依赖性,发现在 0.35 μm$umu {rm m}$、250 cm2${rm cm}^2$ Vs-1 和 1016$10^{16}$ cm-3${rm cm}^{-3}$条件下分别能产生最大性能。在这些条件下,该器件在 AM1.5 照明下的 J$J$-V$V$ 参数为:短路电流密度 JSC=17.76$J_{SC}=17.76$ mA cm-2$\{mathrm{cm}}^{-2}$;开路电压 VOC=1.74$V_{OC}=1.74$ V;FF=83.8%$FF=83.8/%$;PCE=25.9%${rm PCE}\,=25.9/%$。据悉,这是第一个基于 ZnOxNy${rm ZnO}_x{rm N}_y$ 的器件模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
A First‐Principles Study on the Effect of Rh Content on the Lattice, Electronic and Mechanical Properties of Pt‐Rh Solid Solution Enhanced Selectivity by Planar Hyper‐Coordinate Transition Metals for Biosensing Exploring the Bulk Phase of 2D MA2Z4 Family Quantum Mechanical Transport Analysis in Formamidinium-Based Perovskite Solar Cells Multifunctional Graphene Space–Time Coding Metasurface for Terahertz Holographic Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1