Organic solvents offer a promising avenue for enhancing metal-ion battery performance, for instance, in suppressing dendritic formation. To expedite the discovery of optimal electrolyte formulations, this study integrates density functional theory calculations with machine learning to accurately predict binding energies between metal ions and organic solvents. Leveraging a vast dataset of over 300 organic molecules, an extra trees regressor model is developed and demonstrated to exhibit exceptional predictive capabilities. The model's performance is underscored by its high <span data-altimg="/cms/asset/8052b7fa-7480-4fd8-8049-3a5c19f31eed/adts202401048-math-0001.png"></span><mjx-container ctxtmenu_counter="4" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202401048-math-0001.png"><mjx-semantics><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-role="latinletter" data-semantic-speech="normal upper R squared" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202401048:adts202401048-math-0001" display="inline" location="graphic/adts202401048-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup data-semantic-="" data-semantic-children="0,1" data-semantic-role="latinletter" data-semantic-speech="normal upper R squared" data-semantic-type="superscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" mathvariant="normal">R</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msup>${rm R}^2$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values on both validation and test sets. Key descriptors contributing to the model's accuracy include the number of valence electrons in the metal ion, the atomic number of the metal ion, and features associated with the van der Waals surface. By applying the trained model to a dataset of up to 20 000 unseen organic molecules, potential high-performance electrolyte additives are identified. Notably, <span data-altimg="/cms/asset/37ae52ad-20b3-45d4-9331-e98e1e71d5b3/adts2024010
{"title":"Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries","authors":"Wiwittawin Sukmas, Jiaqian Qin, Rungroj Chanajaree","doi":"10.1002/adts.202401048","DOIUrl":"https://doi.org/10.1002/adts.202401048","url":null,"abstract":"Organic solvents offer a promising avenue for enhancing metal-ion battery performance, for instance, in suppressing dendritic formation. To expedite the discovery of optimal electrolyte formulations, this study integrates density functional theory calculations with machine learning to accurately predict binding energies between metal ions and organic solvents. Leveraging a vast dataset of over 300 organic molecules, an extra trees regressor model is developed and demonstrated to exhibit exceptional predictive capabilities. The model's performance is underscored by its high <span data-altimg=\"/cms/asset/8052b7fa-7480-4fd8-8049-3a5c19f31eed/adts202401048-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401048-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401048:adts202401048-math-0001\" display=\"inline\" location=\"graphic/adts202401048-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup>${rm R}^2$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values on both validation and test sets. Key descriptors contributing to the model's accuracy include the number of valence electrons in the metal ion, the atomic number of the metal ion, and features associated with the van der Waals surface. By applying the trained model to a dataset of up to 20 000 unseen organic molecules, potential high-performance electrolyte additives are identified. Notably, <span data-altimg=\"/cms/asset/37ae52ad-20b3-45d4-9331-e98e1e71d5b3/adts2024010","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"13 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photonic crystals (PtCs) can confine and guide electromagnetic waves within specific frequency ranges, forming the foundation for promising optical applications. To numerically design PtCs with broad bandgaps, materials with high dielectric constants are favored. However, fabricating these high dielectric constant materials into microstructures is extremely challenging and it suffers from limitation of low fabricating resolution. To address this problem, this paper proposes hybrid microstructures composed of an easy-to-fabricate core and a high dielectric constant coating layer, which leverages the strength of both materials. This paper establishes a topology optimization algorithm to generate these PtCs with maximized bandgaps. Numerical examples demonstrate the effectiveness of the proposed method in generating optimized unit cells for both transverse magnetic (TM) and transverse electric (TE) modes. The hybrid PtCs offer unprecedented opportunities for the fabrication of optical devices, encouraging further research on multimaterial optical systems and advanced optimization methods to explore photonic bandgap materials beyond those offered by the current photonic technology.
{"title":"Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals","authors":"Tianyu Zhang, Weibai Li, Baohua Jia, Xiaodong Huang","doi":"10.1002/adts.202400893","DOIUrl":"https://doi.org/10.1002/adts.202400893","url":null,"abstract":"Photonic crystals (PtCs) can confine and guide electromagnetic waves within specific frequency ranges, forming the foundation for promising optical applications. To numerically design PtCs with broad bandgaps, materials with high dielectric constants are favored. However, fabricating these high dielectric constant materials into microstructures is extremely challenging and it suffers from limitation of low fabricating resolution. To address this problem, this paper proposes hybrid microstructures composed of an easy-to-fabricate core and a high dielectric constant coating layer, which leverages the strength of both materials. This paper establishes a topology optimization algorithm to generate these PtCs with maximized bandgaps. Numerical examples demonstrate the effectiveness of the proposed method in generating optimized unit cells for both transverse magnetic (TM) and transverse electric (TE) modes. The hybrid PtCs offer unprecedented opportunities for the fabrication of optical devices, encouraging further research on multimaterial optical systems and advanced optimization methods to explore photonic bandgap materials beyond those offered by the current photonic technology.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The density functional theory (DFT) is employed to study the modulation of electronic and magnetic properties of <span data-altimg="/cms/asset/58fb9189-d713-4d2d-be99-33ad60c5da8e/adts202400900-math-0003.png"></span><mjx-container ctxtmenu_counter="9" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400900-math-0003.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202400900:adts202400900-math-0003" display="inline" location="graphic/adts202400900-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub data-semantic-="" data-semantic-children="0,1" data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mi data-semantic-="" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier">SiS</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msub>${rm SiS}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> monolayer through doping with pnictogen (P and As) atoms. <span data-altimg="/cms/asset/2456b317-1617-4eaa-8fb2-e25536afcb33/adts202400900-math-0004.png"></span><mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400900-math-0004.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mj
本文采用密度泛函理论(DFT)研究了通过掺杂对锑原子(P 原子和 As 原子)来调节单层 SiS2${rm SiS}_{2}$ 的电子和磁性能。SiS2${/rm SiS}_{2}$单层本质上是无磁性的,具有标准(混合)官能团提供的1.39(2.26) eV间接带隙的半导体性质。这种二维材料在单 Si 空位、单 S 空位和成对 Si─S 空位的作用下被金属化。在后一种情况下,主要由空位周围的 S 原子产生明显的磁性,总磁矩为 1.55 μB$mu _{B}$。在硅亚晶格上掺入 P 原子和 As 原子时,单层金属化也会发生,并保持非磁性。同时,P 原子和 As 原子的取代导致了磁性的出现,总磁矩分别为 0.93 和 0.99 μB$mu _{B}$。在这里,磁性主要是由 pnictogen 杂质的最外层 p$p$ 轨道产生的。有趣的是,研究结果证实了半金属性的出现,这为新型高自旋极化二维材料提供了证据。此外,还考虑了以不同的掺杂配置掺入成对的 P/P、As/As 和 P/As 原子。研究发现,掺入成对的P/P、As/As和P/As原子后,非磁性半导体性质得以保留,但却诱发了间接到直接间隙的转变。此外,能隙在 51.80% 到 77.70% 之间出现了大幅缩小。这项工作的发现可能表明,通过在 SiS2${rm SiS}_{2}$ 单层中掺杂对锑原子,有望形成光电和自旋电子二维材料。
{"title":"Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study","authors":"Nguyen Thi Han, J. Guerrero-Sanchez, D. M. Hoat","doi":"10.1002/adts.202400900","DOIUrl":"https://doi.org/10.1002/adts.202400900","url":null,"abstract":"The density functional theory (DFT) is employed to study the modulation of electronic and magnetic properties of <span data-altimg=\"/cms/asset/58fb9189-d713-4d2d-be99-33ad60c5da8e/adts202400900-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400900-math-0003.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400900:adts202400900-math-0003\" display=\"inline\" location=\"graphic/adts202400900-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">SiS</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub>${rm SiS}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> monolayer through doping with pnictogen (P and As) atoms. <span data-altimg=\"/cms/asset/2456b317-1617-4eaa-8fb2-e25536afcb33/adts202400900-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400900-math-0004.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mj","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"5 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead (Adv. Theory Simul. 11/2024)","authors":"","doi":"10.1002/adts.202470028","DOIUrl":"10.1002/adts.202470028","url":null,"abstract":"","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular dynamics-based conformational search method allows the simulation of collision cross section distribution for structural analysis of organic molecules using ion mobility-mass spectrometry. The cover picture illustrates the simulation and classification of polyketone sodium adduct conformers. For further information, see article number 2400691 by Kentaro Yamaguchi, Masato Kobayashi, Yasuhide Inokuma, and co-workers.