首页 > 最新文献

Advanced Theory and Simulations最新文献

英文 中文
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries 机器学习建模加速金属离子电池中的有机溶剂设计
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-19 DOI: 10.1002/adts.202401048
Wiwittawin Sukmas, Jiaqian Qin, Rungroj Chanajaree
Organic solvents offer a promising avenue for enhancing metal-ion battery performance, for instance, in suppressing dendritic formation. To expedite the discovery of optimal electrolyte formulations, this study integrates density functional theory calculations with machine learning to accurately predict binding energies between metal ions and organic solvents. Leveraging a vast dataset of over 300 organic molecules, an extra trees regressor model is developed and demonstrated to exhibit exceptional predictive capabilities. The model's performance is underscored by its high <span data-altimg="/cms/asset/8052b7fa-7480-4fd8-8049-3a5c19f31eed/adts202401048-math-0001.png"></span><mjx-container ctxtmenu_counter="4" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202401048-math-0001.png"><mjx-semantics><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-role="latinletter" data-semantic-speech="normal upper R squared" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202401048:adts202401048-math-0001" display="inline" location="graphic/adts202401048-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup data-semantic-="" data-semantic-children="0,1" data-semantic-role="latinletter" data-semantic-speech="normal upper R squared" data-semantic-type="superscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" mathvariant="normal">R</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msup>${rm R}^2$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values on both validation and test sets. Key descriptors contributing to the model's accuracy include the number of valence electrons in the metal ion, the atomic number of the metal ion, and features associated with the van der Waals surface. By applying the trained model to a dataset of up to 20 000 unseen organic molecules, potential high-performance electrolyte additives are identified. Notably, <span data-altimg="/cms/asset/37ae52ad-20b3-45d4-9331-e98e1e71d5b3/adts2024010
有机溶剂为提高金属离子电池的性能提供了一条大有可为的途径,例如抑制枝晶的形成。为了加快发现最佳电解质配方,本研究将密度泛函理论计算与机器学习相结合,以准确预测金属离子与有机溶剂之间的结合能。利用一个包含 300 多种有机分子的庞大数据集,开发了一个额外树回归模型,并证明该模型具有卓越的预测能力。该模型在验证集和测试集上的高 R2${rm R}^2$值凸显了其性能。提高模型准确性的关键描述符包括金属离子中的价电子数、金属离子的原子序数以及与范德华表面相关的特征。通过将训练有素的模型应用于多达 20,000 个未见过的有机分子数据集,可以识别出潜在的高性能电解质添加剂。值得注意的是,C13H24N2O2${rm C}_{13}{rm H}_{24}{rm N}_2 {rm O}_2$ 和 C11H18O5$ {rm C}_{11}{rm H}_{18}{rm O}_5$ 分别成为锰离子电池和镁离子电池的理想候选添加剂,其性能优于传统添加剂。为了深入了解这些已识别分子的微观行为,我们进行了分子动力学模拟。这项研究为通过合理选择有机溶剂加速先进金属离子电池的设计建立了一个强大的硅学框架。
{"title":"Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries","authors":"Wiwittawin Sukmas, Jiaqian Qin, Rungroj Chanajaree","doi":"10.1002/adts.202401048","DOIUrl":"https://doi.org/10.1002/adts.202401048","url":null,"abstract":"Organic solvents offer a promising avenue for enhancing metal-ion battery performance, for instance, in suppressing dendritic formation. To expedite the discovery of optimal electrolyte formulations, this study integrates density functional theory calculations with machine learning to accurately predict binding energies between metal ions and organic solvents. Leveraging a vast dataset of over 300 organic molecules, an extra trees regressor model is developed and demonstrated to exhibit exceptional predictive capabilities. The model's performance is underscored by its high &lt;span data-altimg=\"/cms/asset/8052b7fa-7480-4fd8-8049-3a5c19f31eed/adts202401048-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202401048-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202401048:adts202401048-math-0001\" display=\"inline\" location=\"graphic/adts202401048-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\"&gt;R&lt;/mi&gt;&lt;mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;2&lt;/mn&gt;&lt;/msup&gt;${rm R}^2$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt; values on both validation and test sets. Key descriptors contributing to the model's accuracy include the number of valence electrons in the metal ion, the atomic number of the metal ion, and features associated with the van der Waals surface. By applying the trained model to a dataset of up to 20 000 unseen organic molecules, potential high-performance electrolyte additives are identified. Notably, &lt;span data-altimg=\"/cms/asset/37ae52ad-20b3-45d4-9331-e98e1e71d5b3/adts2024010","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"13 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals 拓扑优化带来高性能、易制造的混合光子晶体
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-16 DOI: 10.1002/adts.202400893
Tianyu Zhang, Weibai Li, Baohua Jia, Xiaodong Huang
Photonic crystals (PtCs) can confine and guide electromagnetic waves within specific frequency ranges, forming the foundation for promising optical applications. To numerically design PtCs with broad bandgaps, materials with high dielectric constants are favored. However, fabricating these high dielectric constant materials into microstructures is extremely challenging and it suffers from limitation of low fabricating resolution. To address this problem, this paper proposes hybrid microstructures composed of an easy-to-fabricate core and a high dielectric constant coating layer, which leverages the strength of both materials. This paper establishes a topology optimization algorithm to generate these PtCs with maximized bandgaps. Numerical examples demonstrate the effectiveness of the proposed method in generating optimized unit cells for both transverse magnetic (TM) and transverse electric (TE) modes. The hybrid PtCs offer unprecedented opportunities for the fabrication of optical devices, encouraging further research on multimaterial optical systems and advanced optimization methods to explore photonic bandgap materials beyond those offered by the current photonic technology.
光子晶体(PtCs)可以在特定频率范围内限制和引导电磁波,为前景广阔的光学应用奠定了基础。为了在数值上设计具有宽带隙的 PtC,人们倾向于使用高介电常数的材料。然而,将这些高介电常数材料制作成微结构极具挑战性,而且还受到制作分辨率低的限制。为解决这一问题,本文提出了由易于制造的内核和高介电常数涂层组成的混合微结构,充分利用了两种材料的优势。本文建立了一种拓扑优化算法,以生成这些具有最大带隙的铂碳。数值示例证明了所提方法在生成横向磁(TM)和横向电(TE)模式的优化单元单元方面的有效性。混合 PtC 为光学器件的制造提供了前所未有的机会,鼓励了对多材料光学系统和先进优化方法的进一步研究,以探索超越当前光子技术所提供的光子带隙材料。
{"title":"Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals","authors":"Tianyu Zhang, Weibai Li, Baohua Jia, Xiaodong Huang","doi":"10.1002/adts.202400893","DOIUrl":"https://doi.org/10.1002/adts.202400893","url":null,"abstract":"Photonic crystals (PtCs) can confine and guide electromagnetic waves within specific frequency ranges, forming the foundation for promising optical applications. To numerically design PtCs with broad bandgaps, materials with high dielectric constants are favored. However, fabricating these high dielectric constant materials into microstructures is extremely challenging and it suffers from limitation of low fabricating resolution. To address this problem, this paper proposes hybrid microstructures composed of an easy-to-fabricate core and a high dielectric constant coating layer, which leverages the strength of both materials. This paper establishes a topology optimization algorithm to generate these PtCs with maximized bandgaps. Numerical examples demonstrate the effectiveness of the proposed method in generating optimized unit cells for both transverse magnetic (TM) and transverse electric (TE) modes. The hybrid PtCs offer unprecedented opportunities for the fabrication of optical devices, encouraging further research on multimaterial optical systems and advanced optimization methods to explore photonic bandgap materials beyond those offered by the current photonic technology.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region 用于太赫兹波段反射、非对称传输和交叉偏振转换的多功能可重构二氧化钒集成金属表面
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-15 DOI: 10.1002/adts.202400817
Thi Quynh Hoa Nguyen, Thi Minh Nguyen
Integrating reconfigurable and diverse functionalities into a single metasurface at terahertz (THz) frequencies is an emerging research topic that faces significant challenges. Here, a reconfigurable THz metasurface is proposed, offering diversified functionalities based on the phase transition of vanadium dioxide (<span data-altimg="/cms/asset/7497fb8d-65c0-4e0d-9482-0db7710045f9/adts202400817-math-0001.png"></span><mjx-container ctxtmenu_counter="3" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400817-math-0001.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper V upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202400817:adts202400817-math-0001" display="inline" location="graphic/adts202400817-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub data-semantic-="" data-semantic-children="0,1" data-semantic-role="unknown" data-semantic-speech="upper V upper O 2" data-semantic-type="subscript"><mi data-semantic-="" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier">VO</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msub>${rm VO}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>). The proposed metasurface can switch from wideband reflection to wideband cross-polarization conversion (CPC) and asymmetric transmission (AT) for linearly polarized waves. When <span data-altimg="/cms/asset/7a51d4ec-9d9d-4692-ad34-62480fe0daf3/adts202400817-math-0002.png"></span><mjx-container ctxtmenu_counter="4" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400817-math-0002.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper V upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi>
在太赫兹(THz)频率下将可重新配置的多种功能集成到单一元表面中是一个新兴的研究课题,面临着巨大的挑战。本文提出了一种可重新配置的太赫兹元表面,基于二氧化钒(VO2${rm VO}_2$)的相变提供多样化的功能。对于线性极化波,所提出的元表面可以从宽带反射切换到宽带跨极化转换(CPC)和非对称传输(AT)。当 VO2${rm VO}_2$ 处于完全金属态时,元表面能有效反射 0.2 至 2.8 太赫兹的正常入射波,总反射率超过 0.8。当 VO2${rm VO}_2$ 处于绝缘态时,元表面实现了近乎完美的宽带跨偏振转换,在 0.46 至 2.67 太赫兹范围内的 CPC 效率超过 0.99,在 0.65 至 2.29 太赫兹范围内,对于正常入射的线性偏振波,AT 效应极佳,效率超过 0.9。此外,在很宽的入射角范围内,CPC 和 AT 效应都能保持高效率。这种具有多种功能的可切换元表面有望推动太赫兹通信、传感和成像领域的前沿研究和创新应用。
{"title":"Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region","authors":"Thi Quynh Hoa Nguyen, Thi Minh Nguyen","doi":"10.1002/adts.202400817","DOIUrl":"https://doi.org/10.1002/adts.202400817","url":null,"abstract":"Integrating reconfigurable and diverse functionalities into a single metasurface at terahertz (THz) frequencies is an emerging research topic that faces significant challenges. Here, a reconfigurable THz metasurface is proposed, offering diversified functionalities based on the phase transition of vanadium dioxide (&lt;span data-altimg=\"/cms/asset/7497fb8d-65c0-4e0d-9482-0db7710045f9/adts202400817-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202400817-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400817:adts202400817-math-0001\" display=\"inline\" location=\"graphic/adts202400817-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;VO&lt;/mi&gt;&lt;mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;2&lt;/mn&gt;&lt;/msub&gt;${rm VO}_2$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt;). The proposed metasurface can switch from wideband reflection to wideband cross-polarization conversion (CPC) and asymmetric transmission (AT) for linearly polarized waves. When &lt;span data-altimg=\"/cms/asset/7a51d4ec-9d9d-4692-ad34-62480fe0daf3/adts202400817-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202400817-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"31 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study 改变单层 SiS2 电子和磁性能的 Pnictogen 原子置换:DFT 研究
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-15 DOI: 10.1002/adts.202400900
Nguyen Thi Han, J. Guerrero-Sanchez, D. M. Hoat
The density functional theory (DFT) is employed to study the modulation of electronic and magnetic properties of <span data-altimg="/cms/asset/58fb9189-d713-4d2d-be99-33ad60c5da8e/adts202400900-math-0003.png"></span><mjx-container ctxtmenu_counter="9" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400900-math-0003.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:25130390:media:adts202400900:adts202400900-math-0003" display="inline" location="graphic/adts202400900-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub data-semantic-="" data-semantic-children="0,1" data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mi data-semantic-="" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier">SiS</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msub>${rm SiS}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> monolayer through doping with pnictogen (P and As) atoms. <span data-altimg="/cms/asset/2456b317-1617-4eaa-8fb2-e25536afcb33/adts202400900-math-0004.png"></span><mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/adts202400900-math-0004.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper S 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mj
本文采用密度泛函理论(DFT)研究了通过掺杂对锑原子(P 原子和 As 原子)来调节单层 SiS2${rm SiS}_{2}$ 的电子和磁性能。SiS2${/rm SiS}_{2}$单层本质上是无磁性的,具有标准(混合)官能团提供的1.39(2.26) eV间接带隙的半导体性质。这种二维材料在单 Si 空位、单 S 空位和成对 Si─S 空位的作用下被金属化。在后一种情况下,主要由空位周围的 S 原子产生明显的磁性,总磁矩为 1.55 μB$mu _{B}$。在硅亚晶格上掺入 P 原子和 As 原子时,单层金属化也会发生,并保持非磁性。同时,P 原子和 As 原子的取代导致了磁性的出现,总磁矩分别为 0.93 和 0.99 μB$mu _{B}$。在这里,磁性主要是由 pnictogen 杂质的最外层 p$p$ 轨道产生的。有趣的是,研究结果证实了半金属性的出现,这为新型高自旋极化二维材料提供了证据。此外,还考虑了以不同的掺杂配置掺入成对的 P/P、As/As 和 P/As 原子。研究发现,掺入成对的P/P、As/As和P/As原子后,非磁性半导体性质得以保留,但却诱发了间接到直接间隙的转变。此外,能隙在 51.80% 到 77.70% 之间出现了大幅缩小。这项工作的发现可能表明,通过在 SiS2${rm SiS}_{2}$ 单层中掺杂对锑原子,有望形成光电和自旋电子二维材料。
{"title":"Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study","authors":"Nguyen Thi Han, J. Guerrero-Sanchez, D. M. Hoat","doi":"10.1002/adts.202400900","DOIUrl":"https://doi.org/10.1002/adts.202400900","url":null,"abstract":"The density functional theory (DFT) is employed to study the modulation of electronic and magnetic properties of &lt;span data-altimg=\"/cms/asset/58fb9189-d713-4d2d-be99-33ad60c5da8e/adts202400900-math-0003.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202400900-math-0003.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:25130390:media:adts202400900:adts202400900-math-0003\" display=\"inline\" location=\"graphic/adts202400900-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;SiS&lt;/mi&gt;&lt;mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;2&lt;/mn&gt;&lt;/msub&gt;${rm SiS}_{2}$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt; monolayer through doping with pnictogen (P and As) atoms. &lt;span data-altimg=\"/cms/asset/2456b317-1617-4eaa-8fb2-e25536afcb33/adts202400900-math-0004.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/adts202400900-math-0004.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper S 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mj","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"5 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Theory Simul. 11/2024) 刊头(Adv. Theory Simul.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-11 DOI: 10.1002/adts.202470028
{"title":"Masthead (Adv. Theory Simul. 11/2024)","authors":"","doi":"10.1002/adts.202470028","DOIUrl":"10.1002/adts.202470028","url":null,"abstract":"","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Dynamics-Based Conformational Simulation Method for Analysis of Arrival Time Distributions in Ion Mobility Mass Spectrometry (Adv. Theory Simul. 11/2024) 基于分子动力学的构象模拟方法用于分析离子迁移质谱中的到达时间分布(Adv.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-11 DOI: 10.1002/adts.202470025
Keisuke Tashiro, Yuki Ide, Tetsuya Taketsugu, Kazuaki Ohara, Kentaro Yamaguchi, Masato Kobayashi, Yasuhide Inokuma

Molecular dynamics-based conformational search method allows the simulation of collision cross section distribution for structural analysis of organic molecules using ion mobility-mass spectrometry. The cover picture illustrates the simulation and classification of polyketone sodium adduct conformers. For further information, see article number 2400691 by Kentaro Yamaguchi, Masato Kobayashi, Yasuhide Inokuma, and co-workers.

基于分子动力学的构象搜索方法可以模拟碰撞截面分布,从而利用离子迁移质谱对有机分子进行结构分析。封面图片说明了多酮钠加合物构象的模拟和分类。更多信息,请参阅 Kentaro Yamaguchi、Masato Kobayashi、Yasuhide Inokuma 及合作者撰写的文章,文章编号为 2400691。
{"title":"Molecular Dynamics-Based Conformational Simulation Method for Analysis of Arrival Time Distributions in Ion Mobility Mass Spectrometry (Adv. Theory Simul. 11/2024)","authors":"Keisuke Tashiro,&nbsp;Yuki Ide,&nbsp;Tetsuya Taketsugu,&nbsp;Kazuaki Ohara,&nbsp;Kentaro Yamaguchi,&nbsp;Masato Kobayashi,&nbsp;Yasuhide Inokuma","doi":"10.1002/adts.202470025","DOIUrl":"10.1002/adts.202470025","url":null,"abstract":"<p>Molecular dynamics-based conformational search method allows the simulation of collision cross section distribution for structural analysis of organic molecules using ion mobility-mass spectrometry. The cover picture illustrates the simulation and classification of polyketone sodium adduct conformers. For further information, see article number 2400691 by Kentaro Yamaguchi, Masato Kobayashi, Yasuhide Inokuma, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Perspective on the Homogeneous Coordinate System for Calculating Interatomic Distances and Their Derivatives in Terms of Internal Coordinates (Adv. Theory Simul. 11/2024) 以内部坐标计算原子间距离及其衍生物的均质坐标系新视角(Adv. Theory Simul.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-11 DOI: 10.1002/adts.202470027
Jesus Camargo, Carlile Lavor

This cover image illustrates the contrast between the traditional Cartesian coordinate system (depicted in green) and the homogeneous coordinate system (shown in purple), with an additional dimension extending from the Cartesian grid. The homogeneous model for 3D space not only linearizes isometries, as demonstrated by the 4 × 4 matrix in red using internal coordinates, but it also provides a more elegant and compact representation for calculating interatomic distances, highlighted in red on the left. For further details, see article number 2400271 by Jesus Camargo and Carlile Lavor.

这幅封面图片展示了传统笛卡尔坐标系(绿色)与均质坐标系(紫色)之间的对比,均质坐标系从笛卡尔网格中延伸出一个额外的维度。三维空间的均质模型不仅使等距线性化,如红色的 4×4 矩阵使用内部坐标所示,而且还为计算原子间距离提供了一种更优雅、更紧凑的表示方法,左侧的红色突出显示了这一点。更多详情,请参阅耶稣-卡马戈(Jesus Camargo)和卡莱尔-拉沃尔(Carlile Lavor)的 2400271 号文章。
{"title":"A New Perspective on the Homogeneous Coordinate System for Calculating Interatomic Distances and Their Derivatives in Terms of Internal Coordinates (Adv. Theory Simul. 11/2024)","authors":"Jesus Camargo,&nbsp;Carlile Lavor","doi":"10.1002/adts.202470027","DOIUrl":"10.1002/adts.202470027","url":null,"abstract":"<p>This cover image illustrates the contrast between the traditional Cartesian coordinate system (depicted in green) and the homogeneous coordinate system (shown in purple), with an additional dimension extending from the Cartesian grid. The homogeneous model for 3D space not only linearizes isometries, as demonstrated by the 4\t× 4 matrix in red using internal coordinates, but it also provides a more elegant and compact representation for calculating interatomic distances, highlighted in red on the left. For further details, see article number 2400271 by Jesus Camargo and Carlile Lavor.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024) 二元稀土三碲化物 NdTe3 的结构、弹性、热力学和光电特性的第一性原理详细研究(Adv.)
IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-11 DOI: 10.1002/adts.202470026
Tanbin Chowdhury, Borak Ur Rahman Rano, Ishtiaque M. Syed, Saleh Hasan Naqib

In article number 2400528, Borak Ur Rahman Rano, Saleh Hasan Naqib, and co-workers explore various bulk properties of a novel Charge Density Wave (CDW) compound using density functional theory. The cover image shows the diamond-shaped Fermi surfaces of NdTe3, indicating the CDW phase. The crystal structure is also illustrated. Formulae for an optical function and crystal stability are presented. At the bottom, the Fermi surfaces from a different angle are shown consecutively.

在编号为 2400528 的文章中,Borak Ur Rahman Rano、Saleh Hasan Naqib 及其合作者利用密度泛函理论探索了新型电荷密度波(CDW)化合物的各种体态特性。封面图片显示了 NdTe3 的菱形费米面,表明了 CDW 相。图中还显示了晶体结构。图中给出了光学函数和晶体稳定性的计算公式。底部连续显示了不同角度的费米面。
{"title":"A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)","authors":"Tanbin Chowdhury,&nbsp;Borak Ur Rahman Rano,&nbsp;Ishtiaque M. Syed,&nbsp;Saleh Hasan Naqib","doi":"10.1002/adts.202470026","DOIUrl":"10.1002/adts.202470026","url":null,"abstract":"<p>In article number 2400528, Borak Ur Rahman Rano, Saleh Hasan Naqib, and co-workers explore various bulk properties of a novel Charge Density Wave (CDW) compound using density functional theory. The cover image shows the diamond-shaped Fermi surfaces of NdTe<sub>3</sub>, indicating the CDW phase. The crystal structure is also illustrated. Formulae for an optical function and crystal stability are presented. At the bottom, the Fermi surfaces from a different angle are shown consecutively.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202470026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Physics and Chemistry of Transition Metal Dichalcogenide Janus Monolayers: Properties, Applications, and Future Prospects Transition Metal Dichalcogenide Janus Monolayers 的物理和化学研究进展:特性、应用和未来展望
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-09 DOI: 10.1002/adts.202400854
Rajneesh Chaurasiya, Shubham Tyagi, Abhijeet J. Kale, Goutam Kumar Gupta, Rajesh Kumar, Ambesh Dixit
Janus transition metal dichalcogenides (JTMDs) have garnered significant interest from the scientific community owing to their remarkable physical and chemical features. The existence of intrinsic dipoles makes them different from conventional transition metal dichalcogenides. These properties are useful in various potential applications, including energy storage, energy generation, and other electronic devices. The JTMDs are considered a hot topic in two dimensional (2D) materials research, making it necessary to understand their fundamental properties and potential use in various applications. This review covers the fundamental difference between Janus and conventional transition metal dichalcogenide‐based 2D materials. This discussion encompasses the characteristics of monolayer, bilayer, and multilayer materials, focusing on their structural stability, electronics properties, optical properties, piezoelectricity, and Rashba effects. The impact of external stimuli such as strain and electric field toward engineering the ground state properties of monolayer JTMDs is discussed. Additionally, various potential applications of Janus monolayers, including gas sensors, catalysis, electrochemical energy storage, thermoelectric, solar cells, and field effect transistors, are highlighted, emphasizing enhancing their performance. Finally, the prospects of Janus 2D materials for next‐generation electronic devices are highlighted.
杰纳斯过渡金属二钙化物(JTMDs)因其显著的物理和化学特征而备受科学界关注。本征偶极子的存在使它们有别于传统的过渡金属二钙化物。这些特性可用于各种潜在应用,包括储能、发电和其他电子设备。JTMD 被认为是二维(2D)材料研究的热门话题,因此有必要了解它们的基本特性以及在各种应用中的潜在用途。本综述涵盖了 Janus 与传统过渡金属二钴基二维材料的根本区别。讨论包括单层、双层和多层材料的特性,重点是它们的结构稳定性、电子特性、光学特性、压电性和拉什巴效应。此外,还讨论了应变和电场等外部刺激对单层 JTMD 基态特性工程学的影响。此外,还重点介绍了 Janus 单层材料的各种潜在应用,包括气体传感器、催化、电化学储能、热电、太阳能电池和场效应晶体管,并强调了提高其性能的重要性。最后,还强调了 Janus 二维材料在下一代电子器件中的应用前景。
{"title":"Advances in Physics and Chemistry of Transition Metal Dichalcogenide Janus Monolayers: Properties, Applications, and Future Prospects","authors":"Rajneesh Chaurasiya, Shubham Tyagi, Abhijeet J. Kale, Goutam Kumar Gupta, Rajesh Kumar, Ambesh Dixit","doi":"10.1002/adts.202400854","DOIUrl":"https://doi.org/10.1002/adts.202400854","url":null,"abstract":"Janus transition metal dichalcogenides (JTMDs) have garnered significant interest from the scientific community owing to their remarkable physical and chemical features. The existence of intrinsic dipoles makes them different from conventional transition metal dichalcogenides. These properties are useful in various potential applications, including energy storage, energy generation, and other electronic devices. The JTMDs are considered a hot topic in two dimensional (2D) materials research, making it necessary to understand their fundamental properties and potential use in various applications. This review covers the fundamental difference between Janus and conventional transition metal dichalcogenide‐based 2D materials. This discussion encompasses the characteristics of monolayer, bilayer, and multilayer materials, focusing on their structural stability, electronics properties, optical properties, piezoelectricity, and Rashba effects. The impact of external stimuli such as strain and electric field toward engineering the ground state properties of monolayer JTMDs is discussed. Additionally, various potential applications of Janus monolayers, including gas sensors, catalysis, electrochemical energy storage, thermoelectric, solar cells, and field effect transistors, are highlighted, emphasizing enhancing their performance. Finally, the prospects of Janus 2D materials for next‐generation electronic devices are highlighted.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"95 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peridynamic Framework to Model Additive Manufacturing Processes 建立增材制造工艺模型的周动力框架
IF 3.3 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-08 DOI: 10.1002/adts.202400818
Christian Willberg, Jan‐Timo Hesse, Felix Winkelmann, Robert Hein
The study presents a framework for analyzing Additive Manufacturing processes within the Peridynamics (PD) software PeriLab. This framewor k employs a mesh‐free, point‐based numerical approach to approximate the continuum PD equations. Implemented within this framework are thermal, thermo‐mechanical, and simple additive models. These models have been validated against analytical solutions, Finite Element (FE) models, and Peridigm simulations. To leverage the PD mesh‐free implementation, the study introduces a novel boundary detection algorithm. This algorithm is essential because the outer surface area may change during the manufacturing process. It operates without requiring surface or topology information, relying instead on the comparison of neighborhood volume to sphere volume. Additionally, the study introduces a wrapper that generates the mesh necessary for simulating the printing process, based on the G‐code machine input path. Finally, the study presents a comprehensive analysis of an L‐shaped profile utilizing the developed features, comparing the results with those obtained from an Abaqus solution.
本研究介绍了在 PeriLab 软件中分析增材制造过程的框架。该框架采用无网格、基于点的数值方法来逼近连续的 PD 方程。在此框架内实施了热学、热力学和简单添加模型。这些模型已通过分析解决方案、有限元 (FE) 模型和 Peridigm 仿真验证。为了充分利用无网格 PD 实现,本研究引入了一种新颖的边界检测算法。由于外表面区域在制造过程中可能会发生变化,因此该算法至关重要。它的运行不需要表面或拓扑信息,而是依靠邻域体积与球体体积的比较。此外,该研究还引入了一个封装器,可根据 G 代码机器输入路径生成模拟打印过程所需的网格。最后,该研究利用开发的功能对 L 形轮廓进行了综合分析,并将分析结果与 Abaqus 解决方案得出的结果进行了比较。
{"title":"Peridynamic Framework to Model Additive Manufacturing Processes","authors":"Christian Willberg, Jan‐Timo Hesse, Felix Winkelmann, Robert Hein","doi":"10.1002/adts.202400818","DOIUrl":"https://doi.org/10.1002/adts.202400818","url":null,"abstract":"The study presents a framework for analyzing Additive Manufacturing processes within the Peridynamics (PD) software <jats:styled-content>PeriLab</jats:styled-content>. This framewor k employs a mesh‐free, point‐based numerical approach to approximate the continuum PD equations. Implemented within this framework are thermal, thermo‐mechanical, and simple additive models. These models have been validated against analytical solutions, Finite Element (FE) models, and <jats:styled-content>Peridigm</jats:styled-content> simulations. To leverage the PD mesh‐free implementation, the study introduces a novel boundary detection algorithm. This algorithm is essential because the outer surface area may change during the manufacturing process. It operates without requiring surface or topology information, relying instead on the comparison of neighborhood volume to sphere volume. Additionally, the study introduces a wrapper that generates the mesh necessary for simulating the printing process, based on the G‐code machine input path. Finally, the study presents a comprehensive analysis of an L‐shaped profile utilizing the developed features, comparing the results with those obtained from an <jats:styled-content>Abaqus</jats:styled-content> solution.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1