Antibacterial action, proteolytic immunity, and in vivo activity of a Vibrio cholerae microcin

IF 20.6 1区 医学 Q1 MICROBIOLOGY Cell host & microbe Pub Date : 2024-09-10 DOI:10.1016/j.chom.2024.08.012
Sun-Young Kim, Justin R. Randall, Richard Gu, Quoc D. Nguyen, Bryan W. Davies
{"title":"Antibacterial action, proteolytic immunity, and in vivo activity of a Vibrio cholerae microcin","authors":"Sun-Young Kim, Justin R. Randall, Richard Gu, Quoc D. Nguyen, Bryan W. Davies","doi":"10.1016/j.chom.2024.08.012","DOIUrl":null,"url":null,"abstract":"<p>Microcins are small antibacterial proteins that mediate interbacterial competition. Their narrow-spectrum activity provides opportunities to discover microbiome-sparing treatments. However, microcins have been found almost exclusively in <em>Enterobacteriaceae</em>. Their broader existence and potential implications in other pathogens remain unclear. Here, we identify and characterize a microcin active against pathogenic <em>Vibrio cholerae</em>: MvcC. We show that MvcC is reliant on the outer membrane porin OmpT to cross the outer membrane. MvcC then binds the periplasmic protein OppA to reach and disrupt the cytoplasmic membrane. We demonstrate that MvcC’s cognate immunity protein is a protease, which precisely cleaves MvcC to neutralize its activity. Importantly, we show that MvcC is active against diverse cholera isolates and in a mouse model of <em>V. cholerae</em> colonization. Our results provide a detailed analysis of a microcin outside of <em>Enterobacteriaceae</em> and its potential to influence <em>V. cholerae</em> infection.</p>","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"48 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.08.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microcins are small antibacterial proteins that mediate interbacterial competition. Their narrow-spectrum activity provides opportunities to discover microbiome-sparing treatments. However, microcins have been found almost exclusively in Enterobacteriaceae. Their broader existence and potential implications in other pathogens remain unclear. Here, we identify and characterize a microcin active against pathogenic Vibrio cholerae: MvcC. We show that MvcC is reliant on the outer membrane porin OmpT to cross the outer membrane. MvcC then binds the periplasmic protein OppA to reach and disrupt the cytoplasmic membrane. We demonstrate that MvcC’s cognate immunity protein is a protease, which precisely cleaves MvcC to neutralize its activity. Importantly, we show that MvcC is active against diverse cholera isolates and in a mouse model of V. cholerae colonization. Our results provide a detailed analysis of a microcin outside of Enterobacteriaceae and its potential to influence V. cholerae infection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
霍乱弧菌微霉素的抗菌作用、蛋白水解免疫和体内活性
微球蛋白是一种小型抗菌蛋白,可介导细菌间的竞争。它们的窄谱活性为发现保护微生物的治疗方法提供了机会。然而,微球蛋白几乎只在肠杆菌科细菌中发现。它们在其他病原体中的广泛存在和潜在影响仍不清楚。在这里,我们鉴定并描述了一种对致病性霍乱弧菌具有活性的微霉素:MvcC。我们发现 MvcC 依靠外膜孔蛋白 OmpT 穿过外膜。然后,MvcC 与围质膜蛋白 OppA 结合,到达并破坏细胞质膜。我们证明 MvcC 的同源免疫蛋白是一种蛋白酶,它能精确地裂解 MvcC 以中和其活性。重要的是,我们发现 MvcC 对多种霍乱分离菌株和霍乱弧菌小鼠定植模型都有活性。我们的研究结果详细分析了肠杆菌科以外的一种微量蛋白酶及其影响霍乱弧菌感染的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell host & microbe
Cell host & microbe 生物-微生物学
CiteScore
45.10
自引率
1.70%
发文量
201
审稿时长
4-8 weeks
期刊介绍: Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.
期刊最新文献
Harnessing biosynthesized selenium nanoparticles for recruitment of beneficial soil microbes to plant roots A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes Beta-carbolines suppress vaginal inflammation Bacterial small RNA makes a big impact for gut colonization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1